Oxidative polymerization of tyrosol by horseradish peroxidase (HRP)-H2O2 afforded an insoluble product (oligotyrosol, OligoTyr) consisting of mixture of linear oligomers (up to 11-mer) with limited benzylic branching points, as evidenced by ESI-MS and solid state C-13 NMR analysis. OligoTyr proved to be significantly more active than tyrosol in several antioxidant assays and was not toxic to human osteosarcoma SaOS-2 cells, stimulating alkaline phosphatase (ALP) activity at day 7 in a similar manner as tyrosol. However, when loaded at 5% w/w into highly porous polylactic acid (PLA) scaffolds featuring hierarchical structures, OligoTyr caused a significant increase in the ALP activity of SaOS-2 cells compared to PLA alone, while tyrosol was completely inactive. A release of ca. 5% from PLA was determined after 1 week in a physiological medium. No significant influence on calcium release from PLA scaffolds containing 5% beta-tricalcium phosphate was observed.
Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization
MARTINOTTI, Simona;RANZATO, Elia;BURLANDO, Bruno Pietro;
2016-01-01
Abstract
Oxidative polymerization of tyrosol by horseradish peroxidase (HRP)-H2O2 afforded an insoluble product (oligotyrosol, OligoTyr) consisting of mixture of linear oligomers (up to 11-mer) with limited benzylic branching points, as evidenced by ESI-MS and solid state C-13 NMR analysis. OligoTyr proved to be significantly more active than tyrosol in several antioxidant assays and was not toxic to human osteosarcoma SaOS-2 cells, stimulating alkaline phosphatase (ALP) activity at day 7 in a similar manner as tyrosol. However, when loaded at 5% w/w into highly porous polylactic acid (PLA) scaffolds featuring hierarchical structures, OligoTyr caused a significant increase in the ALP activity of SaOS-2 cells compared to PLA alone, while tyrosol was completely inactive. A release of ca. 5% from PLA was determined after 1 week in a physiological medium. No significant influence on calcium release from PLA scaffolds containing 5% beta-tricalcium phosphate was observed.File | Dimensione | Formato | |
---|---|---|---|
2016_Powering tyrosol antioxidant capacity and osteogenic activity.pdf
file disponibile agli utenti autorizzati
Descrizione: reprint dell'articolo
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
511.08 kB
Formato
Adobe PDF
|
511.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.