Oxidative polymerization of tyrosol by horseradish peroxidase (HRP)-H2O2 afforded an insoluble product (oligotyrosol, OligoTyr) consisting of mixture of linear oligomers (up to 11-mer) with limited benzylic branching points, as evidenced by ESI-MS and solid state C-13 NMR analysis. OligoTyr proved to be significantly more active than tyrosol in several antioxidant assays and was not toxic to human osteosarcoma SaOS-2 cells, stimulating alkaline phosphatase (ALP) activity at day 7 in a similar manner as tyrosol. However, when loaded at 5% w/w into highly porous polylactic acid (PLA) scaffolds featuring hierarchical structures, OligoTyr caused a significant increase in the ALP activity of SaOS-2 cells compared to PLA alone, while tyrosol was completely inactive. A release of ca. 5% from PLA was determined after 1 week in a physiological medium. No significant influence on calcium release from PLA scaffolds containing 5% beta-tricalcium phosphate was observed.

Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization

MARTINOTTI, Simona;RANZATO, Elia;BURLANDO, Bruno Pietro;
2016-01-01

Abstract

Oxidative polymerization of tyrosol by horseradish peroxidase (HRP)-H2O2 afforded an insoluble product (oligotyrosol, OligoTyr) consisting of mixture of linear oligomers (up to 11-mer) with limited benzylic branching points, as evidenced by ESI-MS and solid state C-13 NMR analysis. OligoTyr proved to be significantly more active than tyrosol in several antioxidant assays and was not toxic to human osteosarcoma SaOS-2 cells, stimulating alkaline phosphatase (ALP) activity at day 7 in a similar manner as tyrosol. However, when loaded at 5% w/w into highly porous polylactic acid (PLA) scaffolds featuring hierarchical structures, OligoTyr caused a significant increase in the ALP activity of SaOS-2 cells compared to PLA alone, while tyrosol was completely inactive. A release of ca. 5% from PLA was determined after 1 week in a physiological medium. No significant influence on calcium release from PLA scaffolds containing 5% beta-tricalcium phosphate was observed.
File in questo prodotto:
File Dimensione Formato  
2016_Powering tyrosol antioxidant capacity and osteogenic activity.pdf

file disponibile agli utenti autorizzati

Descrizione: reprint dell'articolo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 511.08 kB
Formato Adobe PDF
511.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/75427
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact