An unsupervised and a supervised classification approach for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.
Classification methods for Hilbert data based on surrogate density
BONGIORNO, Enea Giuseppe;GOIA, Aldo
2016-01-01
Abstract
An unsupervised and a supervised classification approach for Hilbert random curves are studied. Both rest on the use of a surrogate of the probability density which is defined, in a distribution-free mixture context, from an asymptotic factorization of the small-ball probability. That surrogate density is estimated by a kernel approach from the principal components of the data. The focus is on the illustration of the classification algorithms and the computational implications, with particular attention to the tuning of the parameters involved. Some asymptotic results are sketched. Applications on simulated and real datasets show how the proposed methods work.File | Dimensione | Formato | |
---|---|---|---|
Bongiorno Goia - 2016 - CSDA - Classification methods for Hilbert data based on surrogate density.pdf
Open Access dal 09/03/2018
Descrizione: Revised Personal Version (post-print)
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.