Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.

Gene transduction by lentiviral vectors is limited by nuclear translocation of the genome and is rescued by incorporation of cis-acting sequences from the HIV-1 pol gene

FOLLENZI, Antonia;
2000-01-01

Abstract

Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.
File in questo prodotto:
File Dimensione Formato  
ng0600_217.pdf

file disponibile solo agli amministratori

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 926.33 kB
Formato Adobe PDF
926.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/7048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact