We derive a modular anomaly equation satisfied by the prepotential of the N=2* supersymmetric theories with non-simply laced gauge algebras, including the classical B and C infinite series and the exceptional F4 and G2 cases. This equation determines the exact prepotential recursively in an expansion for small mass in terms of quasi-modular forms of the S-duality group. We also discuss the behaviour of these theories under S-duality and show that the prepotential of the SO(2r+1) theory is mapped to that of the Sp(2r) theory and viceversa, while the exceptional F4 and G2 theories are mapped into themselves (up to a rotation of the roots) in analogy with what happens for the N=4 supersymmetric theories. These results extend the analysis for the simply laced groups presented in a companion paper.
S-duality and the prepotential in N=2* theories (II): the non-simply laced algebras
LERDA, Alberto;
2015-01-01
Abstract
We derive a modular anomaly equation satisfied by the prepotential of the N=2* supersymmetric theories with non-simply laced gauge algebras, including the classical B and C infinite series and the exceptional F4 and G2 cases. This equation determines the exact prepotential recursively in an expansion for small mass in terms of quasi-modular forms of the S-duality group. We also discuss the behaviour of these theories under S-duality and show that the prepotential of the SO(2r+1) theory is mapped to that of the Sp(2r) theory and viceversa, while the exceptional F4 and G2 theories are mapped into themselves (up to a rotation of the roots) in analogy with what happens for the N=4 supersymmetric theories. These results extend the analysis for the simply laced groups presented in a companion paper.File | Dimensione | Formato | |
---|---|---|---|
JHEP_15_11_026.pdf
file ad accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
630.8 kB
Formato
Adobe PDF
|
630.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.