A battery of biomarkers has recently been developed in the earthworm Eisenia andrei. In this study, different biomarkers (i.e. Ca²⁺-ATPase activity, lysosomal membrane stability-LMS, lysosomal lipofuscin and neutral lipid content) were utilized to evaluate the alterations in the physiological status of animals, induced by exposure for 3d to different sublethal concentrations of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (1.5 × 10⁻³, 1.5 × 10⁻², 1.5×10⁻¹ ng mL⁻¹) utilizing the paper contact toxicity test. Lysosome/cytoplasm volume ratio and DNA damage were also evaluated as a biomarker at the tissue level and as a biomarker of genotoxicity, respectively. Moreover, the NR retention time assay conditions were optimized for the determination of in vivo LMS in earthworm coelomocytes. The results demonstrate that LMS and Ca²⁺-ATPase activity were early warning biomarkers able to detect the effects of minimal amounts of TCDD and that biomarkers evaluated at the tissue level are important for following the evolution of the stress syndrome in earthworms. To evaluate the health status of the animals, an Earthworm Expert System (EES) for biomarker data integration and interpretation was developed. The EES proved to be a suitable tool able to rank, objectively, the different levels of the stress syndrome in E. andrei induced by the different concentrations of TCDD.
Effects of dioxin exposure in Eisenia andrei: integration of biomarker data by an Expert System to rank the development of pollutant-induced stress syndrome in earthworms.
SFORZINI, Susanna;DAGNINO, Alessandro;OLIVERI, Laura;VIARENGO, Aldo Giuseppe
2011-01-01
Abstract
A battery of biomarkers has recently been developed in the earthworm Eisenia andrei. In this study, different biomarkers (i.e. Ca²⁺-ATPase activity, lysosomal membrane stability-LMS, lysosomal lipofuscin and neutral lipid content) were utilized to evaluate the alterations in the physiological status of animals, induced by exposure for 3d to different sublethal concentrations of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) (1.5 × 10⁻³, 1.5 × 10⁻², 1.5×10⁻¹ ng mL⁻¹) utilizing the paper contact toxicity test. Lysosome/cytoplasm volume ratio and DNA damage were also evaluated as a biomarker at the tissue level and as a biomarker of genotoxicity, respectively. Moreover, the NR retention time assay conditions were optimized for the determination of in vivo LMS in earthworm coelomocytes. The results demonstrate that LMS and Ca²⁺-ATPase activity were early warning biomarkers able to detect the effects of minimal amounts of TCDD and that biomarkers evaluated at the tissue level are important for following the evolution of the stress syndrome in earthworms. To evaluate the health status of the animals, an Earthworm Expert System (EES) for biomarker data integration and interpretation was developed. The EES proved to be a suitable tool able to rank, objectively, the different levels of the stress syndrome in E. andrei induced by the different concentrations of TCDD.File | Dimensione | Formato | |
---|---|---|---|
Sforzini et al., 2011.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
483.58 kB
Formato
Adobe PDF
|
483.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.