Anionic surfactant-free polymeric core-shell nanospheres and microspheres were previously described with an inner core constituted by poly(methylmethacrylate) (PMMA) and a highly hydrophilic outer shell composed of a hydiosoluble co-polymer (Eudragit L100-55). The outer shell is tightly linked to the core and bears carboxylic groups capable of adsorbing high amounts (antigen loading ability of up to 20%, w/w) of native basic proteins, mainly by electrostatic interactions, while preserving their activity. In the present study we have evaluated in mice the safety and immunogenicity of new vaccine formulations composed of these nano- and microspheres and the HIV-1 Tat protein. Vaccines were administered by different routes, including intramuscular, subcutaneous or intranasal and the results were compared to immunization with Tat alone or with Tat delivered with the alum adjuvant. The data demonstrate that the nano- and microspheres/Tat formulations are safe and induce robust and long-lasting cellular and humoral responses in mice after systemic and/or mucosal immunization. These delivery systems may have great potential for novel Tat protein-based vaccines against HIV-1 and hold promise for other protein-based vaccines.

Induction of humoral and enhanced cellular immune responses by novel core-shell nanosphere- and microsphere-based vaccine formulations following systemic and mucosal administration

SPARNACCI, Katia;LAUS, Michele;
2009-01-01

Abstract

Anionic surfactant-free polymeric core-shell nanospheres and microspheres were previously described with an inner core constituted by poly(methylmethacrylate) (PMMA) and a highly hydrophilic outer shell composed of a hydiosoluble co-polymer (Eudragit L100-55). The outer shell is tightly linked to the core and bears carboxylic groups capable of adsorbing high amounts (antigen loading ability of up to 20%, w/w) of native basic proteins, mainly by electrostatic interactions, while preserving their activity. In the present study we have evaluated in mice the safety and immunogenicity of new vaccine formulations composed of these nano- and microspheres and the HIV-1 Tat protein. Vaccines were administered by different routes, including intramuscular, subcutaneous or intranasal and the results were compared to immunization with Tat alone or with Tat delivered with the alum adjuvant. The data demonstrate that the nano- and microspheres/Tat formulations are safe and induce robust and long-lasting cellular and humoral responses in mice after systemic and/or mucosal immunization. These delivery systems may have great potential for novel Tat protein-based vaccines against HIV-1 and hold promise for other protein-based vaccines.
File in questo prodotto:
File Dimensione Formato  
2009_Vaccine_3605.pdf

file disponibile solo agli amministratori

Tipologia: Altro materiale allegato
Licenza: DRM non definito
Dimensione 857.08 kB
Formato Adobe PDF
857.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/32206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact