Splenic marginal zone lymphoma (SMZL) is one of the few B-cell lymphoma types that remain orphan of molecular lesions in cancer-related genes. Detection of active NF-κB signaling in 14 (58%) of 24 SMZLs prompted the investigation of NF-κB molecular alterations in 101 SMZLs. Mutations and copy number abnormalities of NF-κB genes occurred in 36 (36%) of 101 SMZLs and targeted both canonical (TNFAIP3 and IKBKB) and noncanonical (BIRC3, TRAF3, MAP3K14) NF-κB pathways. Most alterations were mutually exclusive, documenting the existence of multiple independent mechanisms affecting NF-κB in SMZL. BIRC3 inactivation in SMZL recurred because of somatic mutations that disrupted the same RING domain that in extranodal marginal zone lymphoma is removed by the t(11;18) translocation, which points to BIRC3 disruption as a common mechanism across marginal zone B-cell lymphomagenesis. Genetic lesions of NF-κB provide a molecular basis for the pathogenesis of more than 30% of SMZLs and offer a suitable target for NF-κB therapeutic approaches in this lymphoma.
Alteration of BIRC3 and multiple other NF-kB pathway genes in splenic marginal zone lymphoma
ROSSI, Davide;RASI, Silvia;SPINA, Valeria Romina;BRUSCAGGIN, Alessio;MONTI, SARA;CERRI, MICHAELA;CAPELLO, Daniela;GAIDANO, Gianluca
2011-01-01
Abstract
Splenic marginal zone lymphoma (SMZL) is one of the few B-cell lymphoma types that remain orphan of molecular lesions in cancer-related genes. Detection of active NF-κB signaling in 14 (58%) of 24 SMZLs prompted the investigation of NF-κB molecular alterations in 101 SMZLs. Mutations and copy number abnormalities of NF-κB genes occurred in 36 (36%) of 101 SMZLs and targeted both canonical (TNFAIP3 and IKBKB) and noncanonical (BIRC3, TRAF3, MAP3K14) NF-κB pathways. Most alterations were mutually exclusive, documenting the existence of multiple independent mechanisms affecting NF-κB in SMZL. BIRC3 inactivation in SMZL recurred because of somatic mutations that disrupted the same RING domain that in extranodal marginal zone lymphoma is removed by the t(11;18) translocation, which points to BIRC3 disruption as a common mechanism across marginal zone B-cell lymphomagenesis. Genetic lesions of NF-κB provide a molecular basis for the pathogenesis of more than 30% of SMZLs and offer a suitable target for NF-κB therapeutic approaches in this lymphoma.File | Dimensione | Formato | |
---|---|---|---|
Alteration of BIRC3.pdf
file disponibile solo agli amministratori
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
4930.full.pdf
file disponibile solo agli amministratori
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.