Different calibration methods have been applied for the determination of the Hydroxyl Number in polyester resins, namely Partial Least Squares (PLS), Principal Component Regression (PCR), Ordinary Least Squares with selection of the variables by genetic algorithm (OLS-GEN) and back-propagation Artificial Neural Networks (BP-ANN). The predictive ability of the regression models was estimated by splitting the dataset in training and test sets by application of the Kohonen self-organising maps. The linear methods (OLS-GEN, PLS and PCR) showed comparable results while artificial neural networks provided the best results both in fitting and prediction.
Comparison of different calibration methods for the determination by FT-NIR spectroscopy of the hydroxyl number in polyester resins
MARENGO, Emilio;GENNARO, Maria Carla;ROBOTTI, Elisa;
2004-01-01
Abstract
Different calibration methods have been applied for the determination of the Hydroxyl Number in polyester resins, namely Partial Least Squares (PLS), Principal Component Regression (PCR), Ordinary Least Squares with selection of the variables by genetic algorithm (OLS-GEN) and back-propagation Artificial Neural Networks (BP-ANN). The predictive ability of the regression models was estimated by splitting the dataset in training and test sets by application of the Kohonen self-organising maps. The linear methods (OLS-GEN, PLS and PCR) showed comparable results while artificial neural networks provided the best results both in fitting and prediction.File | Dimensione | Formato | |
---|---|---|---|
soave.pdf
file disponibile solo agli amministratori
Tipologia:
Altro materiale allegato
Licenza:
DRM non definito
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.