Esophageal barrier dysfunction is a crucial pathophysiological mechanism of gastroesophageal reflux disease (GERD). However, treatments mainly aim to reduce gastric acidity rather than improve tissue integrity. This study evaluated the protective and mucoadhesive properties of a formulation containing xyloglucan, pea proteins, and polyacrylic acid (XPPA) in gastric and esophageal cells. Cells were exposed to hydrochloric acid (HCl) and subsequently treated with the test compound. Trans-epithelial electrical resistance (TEER), tight junction (TJ) expression, and mucoadhesion of XPPA on gastric and esophageal cells were evaluated. To further confirm the protective ability of XPPA, a Lucifer Yellow assay was performed on a human reconstructed esophageal epithelium to assess the ability of XPPA to prevent HCl-induced hyperpermeability. XPPA possesses noteworthy mucoadhesive properties, ensuring an extended contact time between the product and the damaged mucosa to allow sustained mucosal protection. Furthermore, XPPA effectively restored gastroesophageal barrier integrity after HCl-induced damage, as assessed with TEER, after 1 h (p < 0.05). Finally, XPPA helped to restore TJ expression (p < 0.05) and protected the tissues from hyperpermeability for at least 2 h (p < 0.05). These results pave the way for using XPPA as a promising treatment to ameliorate gastroesophageal barrier properties in GERD patients.

Effective Restoration of Gastric and Esophageal Tissues in an In Vitro Model of GERD: Mucoadhesive and Protective Properties of Xyloglucan, Pea Proteins, and Polyacrylic Acid

Ferrari, Sara;Uberti, Francesca
Ultimo
Funding Acquisition
2025-01-01

Abstract

Esophageal barrier dysfunction is a crucial pathophysiological mechanism of gastroesophageal reflux disease (GERD). However, treatments mainly aim to reduce gastric acidity rather than improve tissue integrity. This study evaluated the protective and mucoadhesive properties of a formulation containing xyloglucan, pea proteins, and polyacrylic acid (XPPA) in gastric and esophageal cells. Cells were exposed to hydrochloric acid (HCl) and subsequently treated with the test compound. Trans-epithelial electrical resistance (TEER), tight junction (TJ) expression, and mucoadhesion of XPPA on gastric and esophageal cells were evaluated. To further confirm the protective ability of XPPA, a Lucifer Yellow assay was performed on a human reconstructed esophageal epithelium to assess the ability of XPPA to prevent HCl-induced hyperpermeability. XPPA possesses noteworthy mucoadhesive properties, ensuring an extended contact time between the product and the damaged mucosa to allow sustained mucosal protection. Furthermore, XPPA effectively restored gastroesophageal barrier integrity after HCl-induced damage, as assessed with TEER, after 1 h (p < 0.05). Finally, XPPA helped to restore TJ expression (p < 0.05) and protected the tissues from hyperpermeability for at least 2 h (p < 0.05). These results pave the way for using XPPA as a promising treatment to ameliorate gastroesophageal barrier properties in GERD patients.
File in questo prodotto:
File Dimensione Formato  
Effective Restoration of Gastric and Esophageal Tissues in an In Vitro Model of GERD-.pdf

file ad accesso aperto

Licenza: Creative commons
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/221944
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact