The Grushin Laplacian −Δ_α is a degenerate elliptic operator in R^{h+k} that degenerates on {0}×R^k. We consider weak solutions of −Δ_α u = Vu in an open bounded connected domain Ω with V ∈W^{1,σ}(Ω) and σ>Q/2, where Q=h+(1+α)k is the so-called homogeneous dimension of R^{h+k}. By means of an Almgren-type monotonicity formula we identify the exact asymptotic blow-up profile of solutions on degenerate points of Ω. As an application we derive strong unique continuation properties for solutions.

On solutions to a class of degenerate equations with the Grushin operator

Ferrero A.
;
Luzzini P.
2025-01-01

Abstract

The Grushin Laplacian −Δ_α is a degenerate elliptic operator in R^{h+k} that degenerates on {0}×R^k. We consider weak solutions of −Δ_α u = Vu in an open bounded connected domain Ω with V ∈W^{1,σ}(Ω) and σ>Q/2, where Q=h+(1+α)k is the so-called homogeneous dimension of R^{h+k}. By means of an Almgren-type monotonicity formula we identify the exact asymptotic blow-up profile of solutions on degenerate points of Ω. As an application we derive strong unique continuation properties for solutions.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S002203962500693X-main.pdf

file disponibile agli utenti autorizzati

Descrizione: File articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.76 MB
Formato Adobe PDF
1.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/218743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact