Circularly polarized luminescence (CPL)─the emission of circularly polarized light from luminescent chiral nonracemic matter─has garnered unprecedented attention in the past decade. Once a niche technique used for the characterization of excited states, CPL has evolved to a powerful and widespread tool for developing functional materials with multiple applications. The development of novel CPL emitters is costly and time-consuming because the key CPL quantities (dissymmetry factor, glum, and CPL brightness, BCPL) often elude simple structure-to-property relationships based on existing knowledge. Today, research in the field is aided by quantum chemistry calculations which offer insight into CPL properties and serve as a predictive tool for the rational design of efficient CPL-active materials. The present review is divided into three sections: (1) a comprehensive presentation of the theoretical foundation of CPL calculations, electronic structure description, environment effects, vibronic modulation, band shape broadening, and aggregate simulation; (2) an extensive literature survey, organized according to a structural criterion; and (3) a critical reassessment of literature data, accompanied by a statistical analysis, aimed at offering the best practices for accurate CPL calculations and identifying the key structural and electronic features that enable the simulation-guided design of novel CPL emitters.

Quantum Chemistry Calculations of Circularly Polarized Luminescence (CPL): From Spectral Modeling to Molecular Design

Ciro A. Guido
Primo
;
2025-01-01

Abstract

Circularly polarized luminescence (CPL)─the emission of circularly polarized light from luminescent chiral nonracemic matter─has garnered unprecedented attention in the past decade. Once a niche technique used for the characterization of excited states, CPL has evolved to a powerful and widespread tool for developing functional materials with multiple applications. The development of novel CPL emitters is costly and time-consuming because the key CPL quantities (dissymmetry factor, glum, and CPL brightness, BCPL) often elude simple structure-to-property relationships based on existing knowledge. Today, research in the field is aided by quantum chemistry calculations which offer insight into CPL properties and serve as a predictive tool for the rational design of efficient CPL-active materials. The present review is divided into three sections: (1) a comprehensive presentation of the theoretical foundation of CPL calculations, electronic structure description, environment effects, vibronic modulation, band shape broadening, and aggregate simulation; (2) an extensive literature survey, organized according to a structural criterion; and (3) a critical reassessment of literature data, accompanied by a statistical analysis, aimed at offering the best practices for accurate CPL calculations and identifying the key structural and electronic features that enable the simulation-guided design of novel CPL emitters.
File in questo prodotto:
File Dimensione Formato  
CPL_Chem_Rev_2025.pdf

file ad accesso aperto

Licenza: Creative commons
Dimensione 59.08 MB
Formato Adobe PDF
59.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/218542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact