Calcium sulfoaluminate (CSA) cement is a sulfate-based binder whose high-performance hydraulic behavior depends on the rapid formation of ettringite, when grinded clinker is hydrated in presence of gypsum. Ettringite is a calcium aluminum sulfate mineral characterized by high water content, estimated as 32 water molecules per formula unit. Three examples of utilization of near-infrared (NIR) spectroscopy are here shown. First of all, information on water distribution in pure ettringite was deduced and compared with infrared analyses. Then its thermal behavior has been followed up to 400 °C, allowing to improve the knowledge about water loss and thermal decomposition of this hydrated phase. Finally, the obtained results have been employed in order to follow hydration of CSA cement sample, demonstrating thus that NIR spectroscopy, being highly sensitive to water amount and dis- tribution, can be an extremely useful tool for hydration studies.
Ettringite and calcium sulfoaluminate cement: investigation of water content by near-infrared spectroscopy
BOCCALERI, Enrico
2009-01-01
Abstract
Calcium sulfoaluminate (CSA) cement is a sulfate-based binder whose high-performance hydraulic behavior depends on the rapid formation of ettringite, when grinded clinker is hydrated in presence of gypsum. Ettringite is a calcium aluminum sulfate mineral characterized by high water content, estimated as 32 water molecules per formula unit. Three examples of utilization of near-infrared (NIR) spectroscopy are here shown. First of all, information on water distribution in pure ettringite was deduced and compared with infrared analyses. Then its thermal behavior has been followed up to 400 °C, allowing to improve the knowledge about water loss and thermal decomposition of this hydrated phase. Finally, the obtained results have been employed in order to follow hydration of CSA cement sample, demonstrating thus that NIR spectroscopy, being highly sensitive to water amount and dis- tribution, can be an extremely useful tool for hydration studies.File | Dimensione | Formato | |
---|---|---|---|
j mater sci 2009.pdf
file disponibile solo agli amministratori
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
261.48 kB
Formato
Adobe PDF
|
261.48 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.