Coordination polymer-based systems, particularly Fe(III)-based polymers, are attracting increasing interest due to their well-controlled morphology, biocompatibility, and versatile surface functionalization. With five unpaired electrons, Fe(III) offers a promising and safer alternative to Gd(III) for MRI applications. While some studies have investigated low molecular weight Fe(III) chelates for MRI, the exploration of Fe(III)-based nanosystems as T1 MRI probes remains limited. This study focuses on the synthesis of Fe(III)/gallic acid nanoparticles functionalized with a low molecular weight polyethylene glycol (PEG) shell, designed to enhance the second-sphere water interaction and improve r1 relaxivity at clinical magnetic fields. The 1H NMR relaxometric properties of these nanoparticles were systematically analyzed as a function of proton Larmor frequencies and temperature, and their performance was compared with a similar system stabilized by polyvinylpyrrolidone (PVP). We aimed to determine the frequency dependence of relaxivity in Fe(iii)-based coordination polymers, and to assess the impact of coating modifications on their MRI contrast efficacy. This knowledge is crucial for the rational design of improved Fe(III)-based nanoprobes, allowing for optimized performance in future MRI applications.
Comprehensive relaxometric analysis of Fe(iii) coordination polymer nanoparticles for T1-MRI: unravelling the impact of coating on contrast enhancement
Ricci, Marco;Carniato, Fabio;Ferrauto, Giuseppe
;Giovenzana, Giovanni Battista;Botta, Mauro
2025-01-01
Abstract
Coordination polymer-based systems, particularly Fe(III)-based polymers, are attracting increasing interest due to their well-controlled morphology, biocompatibility, and versatile surface functionalization. With five unpaired electrons, Fe(III) offers a promising and safer alternative to Gd(III) for MRI applications. While some studies have investigated low molecular weight Fe(III) chelates for MRI, the exploration of Fe(III)-based nanosystems as T1 MRI probes remains limited. This study focuses on the synthesis of Fe(III)/gallic acid nanoparticles functionalized with a low molecular weight polyethylene glycol (PEG) shell, designed to enhance the second-sphere water interaction and improve r1 relaxivity at clinical magnetic fields. The 1H NMR relaxometric properties of these nanoparticles were systematically analyzed as a function of proton Larmor frequencies and temperature, and their performance was compared with a similar system stabilized by polyvinylpyrrolidone (PVP). We aimed to determine the frequency dependence of relaxivity in Fe(iii)-based coordination polymers, and to assess the impact of coating modifications on their MRI contrast efficacy. This knowledge is crucial for the rational design of improved Fe(III)-based nanoprobes, allowing for optimized performance in future MRI applications.File | Dimensione | Formato | |
---|---|---|---|
on line.pdf
file ad accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.