OBJECTIVE: Earlier work has demonstrated that serum autoantibodies from coeliac patients targeted against transglutaminase 2 (TG2) inhibit in vitro angiogenesis. The aim of this study was to establish whether coeliac patient-derived monoclonal TG2-targeted antibodies produced by recombination technology exert similar anti-angiogenic effects to serum-derived coeliac autoantibodies. In addition, we studied whether the monoclonal patient autoantibodies modulate endothelial cell TG2 activity and whether such modulation is related to the anti-angiogenic effects. MATERIAL AND METHODS: The influence of coeliac patient-derived monoclonal TG2-targeted antibodies on endothelial cell tubule formation was studied using a three-dimensional angiogenic cell culture model. Endothelial cell TG2 enzymatic activity was determined by means of a live-cell enzyme-linked immunosorbent assay. RESULTS: Coeliac patient-derived monoclonal TG2-targeted antibodies produced by recombination technology inhibited endothelial tubule formation and enhanced the crosslinking activity of TG2. When this enzymatic activity was inhibited using site-directed irreversible TG2 inhibitors in the presence of autoantibodies, in vitro angiogenesis reverted to the control level. CONCLUSIONS: Since we found a significant negative correlation between endothelial cell angiogenesis and TG2 activity, we suggest that the anti-angiogenic effects of coeliac patient-derived TG2-targeted autoantibodies are exerted by enhanced enzymatic activity of TG2.
Inhibition of transglutaminase 2 enzymatic activity ameliorates the anti-angiogenic effects of coeliac disease autoantibodies
SBLATTERO, DANIELE;
2010-01-01
Abstract
OBJECTIVE: Earlier work has demonstrated that serum autoantibodies from coeliac patients targeted against transglutaminase 2 (TG2) inhibit in vitro angiogenesis. The aim of this study was to establish whether coeliac patient-derived monoclonal TG2-targeted antibodies produced by recombination technology exert similar anti-angiogenic effects to serum-derived coeliac autoantibodies. In addition, we studied whether the monoclonal patient autoantibodies modulate endothelial cell TG2 activity and whether such modulation is related to the anti-angiogenic effects. MATERIAL AND METHODS: The influence of coeliac patient-derived monoclonal TG2-targeted antibodies on endothelial cell tubule formation was studied using a three-dimensional angiogenic cell culture model. Endothelial cell TG2 enzymatic activity was determined by means of a live-cell enzyme-linked immunosorbent assay. RESULTS: Coeliac patient-derived monoclonal TG2-targeted antibodies produced by recombination technology inhibited endothelial tubule formation and enhanced the crosslinking activity of TG2. When this enzymatic activity was inhibited using site-directed irreversible TG2 inhibitors in the presence of autoantibodies, in vitro angiogenesis reverted to the control level. CONCLUSIONS: Since we found a significant negative correlation between endothelial cell angiogenesis and TG2 activity, we suggest that the anti-angiogenic effects of coeliac patient-derived TG2-targeted autoantibodies are exerted by enhanced enzymatic activity of TG2.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.