Objectives: Personalized medicine emphasizes prevention and early diagnosis by developing genetic screening and biomarker assessment tools. Biobanks, including University of Piemonte Orientale (UPO) Biobank, support this effort by providing high-quality biological samples collected, processed, and stored using optimized standardized protocols. To determine the optimal long-term storage conditions for biospecimens used in biomedical research, we evaluated plasma and serum samples cryopreserved using two storage methods, cryovials and straws, across various analytical methodologies with differing sensitivity and robustness. Design and Methods: Plasma and serum samples cryopreserved in liquid nitrogen in vials and straw at the UPO Biobank were subjected to multiple analyses including standard biochemical laboratory analysis, targeted lipidomics, untargeted proteomics, and targeted metabolites quantification through mass spectrometry-based analytical techniques. Results: Our data demonstrate the robustness and applicability of both storage methods for standard laboratory analyses in evaluating clinically relevant markers in plasma and serum. Lipidomic analysis revealed slight disparities in lipid abundance, though these differences were mostly confined to specific lipid species, particularly fatty acids. Conversely, proteomic and metabolomic analyses uncovered variations in abundance in a significant, albeit limited, fraction of analytes between vials and straw-derived samples. Conclusions: By highlighting similarities and differences in samples stored in these conditions, this study provides significant insights into optimizing biobanking practices and understanding the factors that influence the integrity of cryopreserved biospecimens and the reliability of the data derived from them. Both straws and vials are convenient and efficient cryopreservation methods, essentially equivalent for samples dedicated to robust and relatively low-sensitive standardized analyses. However, our findings emphasize the need for caution when interpreting omics data from samples subjected to different cryopreservation methods, as subtle variations can arise even with different types of containers.

Evaluating Cryopreservation Methods in Biobanking: Impacts on Biomarker Integrity and Omics Data Reliability

Antona, Annamaria
;
Bettio, Valentina;Venetucci, Jacopo;Cracas, Silvia Vittoria;Mazzucco, Eleonora;Garro, Giulia;Varalda, Marco;Rolla, Roberta;Capello, Daniela
2025-01-01

Abstract

Objectives: Personalized medicine emphasizes prevention and early diagnosis by developing genetic screening and biomarker assessment tools. Biobanks, including University of Piemonte Orientale (UPO) Biobank, support this effort by providing high-quality biological samples collected, processed, and stored using optimized standardized protocols. To determine the optimal long-term storage conditions for biospecimens used in biomedical research, we evaluated plasma and serum samples cryopreserved using two storage methods, cryovials and straws, across various analytical methodologies with differing sensitivity and robustness. Design and Methods: Plasma and serum samples cryopreserved in liquid nitrogen in vials and straw at the UPO Biobank were subjected to multiple analyses including standard biochemical laboratory analysis, targeted lipidomics, untargeted proteomics, and targeted metabolites quantification through mass spectrometry-based analytical techniques. Results: Our data demonstrate the robustness and applicability of both storage methods for standard laboratory analyses in evaluating clinically relevant markers in plasma and serum. Lipidomic analysis revealed slight disparities in lipid abundance, though these differences were mostly confined to specific lipid species, particularly fatty acids. Conversely, proteomic and metabolomic analyses uncovered variations in abundance in a significant, albeit limited, fraction of analytes between vials and straw-derived samples. Conclusions: By highlighting similarities and differences in samples stored in these conditions, this study provides significant insights into optimizing biobanking practices and understanding the factors that influence the integrity of cryopreserved biospecimens and the reliability of the data derived from them. Both straws and vials are convenient and efficient cryopreservation methods, essentially equivalent for samples dedicated to robust and relatively low-sensitive standardized analyses. However, our findings emphasize the need for caution when interpreting omics data from samples subjected to different cryopreservation methods, as subtle variations can arise even with different types of containers.
File in questo prodotto:
File Dimensione Formato  
cracas-et-al-2025-evaluating-cryopreservation-methods-in-biobanking-impacts-on-biomarker-integrity-and-omics-data.pdf

file ad accesso aperto

Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/211623
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact