Although Cannabis sativa L. is well known for being prolific in phytocannabinoids, their biosynthetic modular mechanism is ruled by a main enzyme: the geranyltransferase able to pursue the C-isoprenylation of olivetolic acid with the geranyldiphosphate. However, the existence of more than 160 meroterpenoids can be partially explained by a side degree of promiscuity of the geranyltransferase itself, able to recognise different substrate than the ordinary ones. This biological process led to the identification of several unconventional phytocannabinoids with a limited distribution in the plant both for occurrence and concentration. Taking advance of the existing synthetic protocols and using as example the enzymatic promiscuity, we propose a bio-inspired synthesis of naturally occurring minor cannabinoids related to the cannabigerol-type and their preliminary biological inspection in U87, U251 and T98 human glioblastoma cell lines to investigate their potential contribute as supplement in anticancer therapy.

Biomimetic synthesis of rare cannabigerol-type cannabinoids and evaluation of their cytotoxic effect on human glioblastoma cell lines

Salamone, Stefano;Camola, Aurora;Pollastro, Federica
2025-01-01

Abstract

Although Cannabis sativa L. is well known for being prolific in phytocannabinoids, their biosynthetic modular mechanism is ruled by a main enzyme: the geranyltransferase able to pursue the C-isoprenylation of olivetolic acid with the geranyldiphosphate. However, the existence of more than 160 meroterpenoids can be partially explained by a side degree of promiscuity of the geranyltransferase itself, able to recognise different substrate than the ordinary ones. This biological process led to the identification of several unconventional phytocannabinoids with a limited distribution in the plant both for occurrence and concentration. Taking advance of the existing synthetic protocols and using as example the enzymatic promiscuity, we propose a bio-inspired synthesis of naturally occurring minor cannabinoids related to the cannabigerol-type and their preliminary biological inspection in U87, U251 and T98 human glioblastoma cell lines to investigate their potential contribute as supplement in anticancer therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/200543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact