Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe. Methods and resultsa: We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusiona: SCORE2 - a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations - enhances the identification of individuals at higher risk of developing CVD across Europe.
SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe
Hageman Steven;Pennells Lisa;Ojeda Francisco;Kaptoge Stephen;Kuulasmaa Kari;de Vries Tamar;Xu Zhe;Kee Frank;Chung Ryan;Wood Angela;McEvoy John William;Veronesi Giovanni;Bolton Thomas;Achenbach Stephan;Aleksandrova Krasimira;Amiano Pilar;Sebastian Donostia-San;Amouyel Philippe;Andersson Jonas;Bakker Stephan J L;Da Providencia Costa Rui Bebiano;Beulens Joline W J;Blaha Michael;Bobak Martin;Boer Jolanda M A;Bonet Catalina;Bonnet Fabrice;Boutron-Ruault Marie-Christine;Braaten Tonje;Brenner Hermann;Brunner Fabian;Brunner Eric J;Brunström Mattias;Buring Julie;Butterworth Adam S;Capkova Nadezda;Cesana Giancarlo;Chrysohoou Christina;Colorado-Yohar Sandra;Cook Nancy R;Cooper Cyrus;Dahm Christina C;Davidson Karina;Dennison Elaine;Di Castelnuovo Augusto;Donfrancesco Chiara;Dörr Marcus;Doryńska Agnieszka;Eliasson Mats;Engström Gunnar;Ferrari Pietro;Ferrario Marco;Ford Ian;Fu Michael;Gansevoort Ron T;Giampaoli Simona;Gillum Richard F;Gómez de la Cámara Agustin;Grassi Guido;Hansson Per-Olof;Huculeci Radu;Hveem Kristian;Iacoviello Licia;Ikram M Kamran;Jørgensen Torben;Joseph Bijoy;Jousilahti Pekka;Wouter Jukema J;Kaaks Rudolf;Katzke Verena;Kavousi Maryam;Kiechl Stefan;Klotsche Jens;König Wolfgang;Kronmal Richard A;Kubinova Ruzena;Kucharska-Newton Anna;Läll Kristi;Lehmann Nils;Leistner David;Linneberg Allan;Pablos David Lora;Lorenz Thiess;Lu Wentian;Luksiene Dalia;Lyngbakken Magnus;Magnussen Christina;Malyutina Sofia;Ibañez Alejandro Marín;Masala Giovanna;Mathiesen Ellisiv B;Matsushita Kuni;Meade Tom W;Melander Olle;Meyer Haakon E;Moons Karel G M;Moreno-Iribas Conchi;Muller David;Münzel Thomas;Nikitin Yury;Nordestgaard Børge G;Omland Torbjørn;Onland Charlotte;Overvad Kim;Packard Chris;Pająk Andrzej;Palmieri Luigi;Panagiotakos Demosthenes;Panico Salvatore;Perez-Cornago Aurora;Peters Annette;Pietilä Arto;Pikhart Hynek;Psaty Bruce M;Quarti-Trevano Fosca;Garcia J Ramón Quirós;Riboli Elio;Ridker Paul M;Rodriguez Beatriz;Rodriguez-Barranco Miguel;Rosengren Annika;Roussel Ronan;Sacerdote Carlotta;Sans Susana;Sattar Naveed;Schiborn Catarina;Schmidt Börge;Schöttker Ben;Schulze Matthias;Schwartz Joseph E;Selmer Randi Marie;Shea Steven;Shipley Martin J;Sieri Sabina;Söderberg Stefan;Sofat Reecha;Tamosiunas Abdonas;Thorand Barbara;Tillmann Taavi;Tjønneland Anne;Tong Tammy Y N;Trichopoulou Antonia;Tumino Rosario;Tunstall-Pedoe Hugh;Tybjaerg-Hansen Anne;Tzoulaki Joanna;van der Heijden Amber;van der Schouw Yvonne T;Verschuren W M Monique;Völzke Henry;Waldeyer Christoph;Wareham Nicholas J;Weiderpass Elisabete;Weidinger Franz;Wild Philipp;Willeit Johann;Willeit Peter;Wilsgaard Tom;Woodward Mark;Zeller Tanja;Zhang Dudan;Zhou Bin;Dendale Paul;Ference Brian A;Halle Martin;Timmis Adam;Vardas Panos;Danesh John;Graham Ian;Salomaa Veikko;Visseren Frank;De Bacquer Dirk;Blankenberg Stefan;Dorresteijn Jannick;Di Angelantonio Emanuele
2021-01-01
Abstract
The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe. Methods and resultsa: We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries. Conclusiona: SCORE2 - a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations - enhances the identification of individuals at higher risk of developing CVD across Europe.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/199667
Citazioni
ND
766
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.