We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image phi( partial differential omega) of a reference set partial differential omega and we present some real analyticity results for the dependence upon the map phi. Then we introduce a perforated domain omega(epsilon) with a small hole of size epsilon and we compute power series expansions that describe the layer potentials on partial differential omega(epsilon) when the parameter epsilon approximates the degenerate value epsilon = 0.

Shape analyticity and singular perturbations for layer potential operators

Luzzini, P;
2022-01-01

Abstract

We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image phi( partial differential omega) of a reference set partial differential omega and we present some real analyticity results for the dependence upon the map phi. Then we introduce a perforated domain omega(epsilon) with a small hole of size epsilon and we compute power series expansions that describe the layer potentials on partial differential omega(epsilon) when the parameter epsilon approximates the degenerate value epsilon = 0.
File in questo prodotto:
File Dimensione Formato  
20220303arxiv_shapeint.pdf

file disponibile solo agli amministratori

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 471.99 kB
Formato Adobe PDF
471.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
m2an220046-3.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 530.34 kB
Formato Adobe PDF
530.34 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/193644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact