We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image phi( partial differential omega) of a reference set partial differential omega and we present some real analyticity results for the dependence upon the map phi. Then we introduce a perforated domain omega(epsilon) with a small hole of size epsilon and we compute power series expansions that describe the layer potentials on partial differential omega(epsilon) when the parameter epsilon approximates the degenerate value epsilon = 0.
Shape analyticity and singular perturbations for layer potential operators
Luzzini, P;
2022-01-01
Abstract
We study the effect of regular and singular domain perturbations on layer potential operators for the Laplace equation. First, we consider layer potentials supported on a diffeomorphic image phi( partial differential omega) of a reference set partial differential omega and we present some real analyticity results for the dependence upon the map phi. Then we introduce a perforated domain omega(epsilon) with a small hole of size epsilon and we compute power series expansions that describe the layer potentials on partial differential omega(epsilon) when the parameter epsilon approximates the degenerate value epsilon = 0.File | Dimensione | Formato | |
---|---|---|---|
20220303arxiv_shapeint.pdf
file disponibile solo agli amministratori
Licenza:
DRM non definito
Dimensione
471.99 kB
Formato
Adobe PDF
|
471.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
m2an220046-3.pdf
file disponibile solo agli amministratori
Licenza:
DRM non definito
Dimensione
530.34 kB
Formato
Adobe PDF
|
530.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.