In the last three decades, high-relaxivity Magnetic Resonance Imaging (MRI) contrast agents (CAs) have been intensively sought, aiming at a reduction in the clinically injected dose while maintaining the safety of the CA and obtaining the same pathological information. Thus, four new Gd(III) complexes based on modified 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (HP-DO3A) macrocyclic structure were designed and synthesized by introducing further polar and protic functional groups (amides, phosphonates, and diols) adjacent to the metalcoordinated hydroxyl group. A detailed 1H NMR relaxometric analysis allowed us to investigate the effect of these functional groups on the relaxivity, which showed a 20–60% increase (at 0.5 T, 298 K, and pH 7.4) with respect to that of clinically approved CAs. The contribution of the water molecules H-bonded to these peripheral functional groups on the relaxivity was evaluated in terms of the second sphere effect or prototropic exchange of labile protons.

Relaxivity Modulation of Gd-HPDO3A-like Complexes by Introducing Polar and Protic Peripheral Groups

Camorali S.
Primo
;
Piscopo L;Leone L.;Tei L.
2024-01-01

Abstract

In the last three decades, high-relaxivity Magnetic Resonance Imaging (MRI) contrast agents (CAs) have been intensively sought, aiming at a reduction in the clinically injected dose while maintaining the safety of the CA and obtaining the same pathological information. Thus, four new Gd(III) complexes based on modified 10-(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid (HP-DO3A) macrocyclic structure were designed and synthesized by introducing further polar and protic functional groups (amides, phosphonates, and diols) adjacent to the metalcoordinated hydroxyl group. A detailed 1H NMR relaxometric analysis allowed us to investigate the effect of these functional groups on the relaxivity, which showed a 20–60% increase (at 0.5 T, 298 K, and pH 7.4) with respect to that of clinically approved CAs. The contribution of the water molecules H-bonded to these peripheral functional groups on the relaxivity was evaluated in terms of the second sphere effect or prototropic exchange of labile protons.
File in questo prodotto:
File Dimensione Formato  
molecules2024_HPADO3As.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 592.65 kB
Formato Adobe PDF
592.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/192022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact