In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both H-1 and O-17 NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)](-) and [Fe(EDTA-BOM2)(H2O)](-) as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.

Comprehensive Investigation of [Fe(EDTA)]−-Functionalized Derivatives and their Supramolecular Adducts with Human Serum Albumin

Nucera, Alessandro;Macchia, Maria Ludovica;Carniato, Fabio;Tei, Lorenzo;Ravera, Mauro;Botta, Mauro
2024-01-01

Abstract

In recent years, the coordination chemistry of high-spin Fe(III) complexes has increasingly attracted interest due to their potential as effective alternatives to Gd(III)-based MRI contrast agents. This paper discusses the results from our study on Fe(III) complexes with two EDTA derivatives, each modified with either one (EDTA-BOM) or two (EDTA-BOM2) benzyloxymethylene (BOM) groups on the acetic arm(s). These pendant hydrophobic groups enable the complexes to form noncovalent adducts with human serum albumin (HSA), leading to an observed increase in relaxivity due to the reduction in molecular tumbling. Our research involved detailed relaxometric measurements and analyses of both H-1 and O-17 NMR data at varying temperatures and magnetic field strengths, which is conducted with and without the presence of a protein. A significant finding of this study is the effect of electronic relaxation time on the effectiveness of [Fe(EDTA-BOM)(H2O)](-) and [Fe(EDTA-BOM2)(H2O)](-) as diagnostic MRI probes. By integrating these relaxometric results with comprehensive thermodynamic, kinetic, and electrochemical data, we have thoroughly characterized how structural modifications to the EDTA base ligand influence the properties of the complexes.
File in questo prodotto:
File Dimensione Formato  
IC_2024_FeEDTA-BOM.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.1 MB
Formato Adobe PDF
3.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/192002
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact