Photodynamic therapy (PDT) is a clinical modality based on the irradiation of different diseases, mostly tumours, with light following the selective uptake of a photosensitiser by the pathological tissue. In this study, two new silicon(IV)phtalocyanines (SiPcs) functionalized at both axial positions with a PSMA inhibitor are reported as candidate photosensitizers for PDT of prostate cancer, namely compounds SiPc-PQ(PSMAi)2 and SiPc-OSi(PSMAi)2. These compounds share the same PSMA-binding motif, but differ in the linker that connects the inhibitor moiety to the Si(IV) atom: an alkoxy (Si−O−C) bond for SiPc-PQ(PSMAi)2, and a silyloxy (Si−O−Si) bond for SiPc-OSi(PSMAi)2. Both compounds were synthesized by a facile synthetic route and fully characterized by 2D NMR, mass spectrometry and absorption/fluorescence spectrophotometry. The PDT agents showed a suitable solubility in water, where they essentially exist in monomeric form. SiPc-PQ(PSMAi)2 showed a higher singlet oxygen quantum yield ΦΔ, higher fluorescence quantum yields ΦF and better photostability than SiPc-OSi(PSMAi)2. Both compounds were efficiently taken up by PSMA(+) PC3-PIP cells, but not by PSMA(−) PC3-FLU cells. However, SiPc-PQ(PSMAi)2 showed a more specific photoinduced cytotoxicity in vitro, which is likely attributable to a better stability of its water solutions.

Silicon phthalocyanines functionalized with axial substituents targeting PSMA: synthesis and preliminary assessment of their potential for PhotoDynamic Therapy of prostate cancer

Digilio, Giuseppe;Tei, Lorenzo;Marchesi, Stefano;Stefania, Rachele
2024-01-01

Abstract

Photodynamic therapy (PDT) is a clinical modality based on the irradiation of different diseases, mostly tumours, with light following the selective uptake of a photosensitiser by the pathological tissue. In this study, two new silicon(IV)phtalocyanines (SiPcs) functionalized at both axial positions with a PSMA inhibitor are reported as candidate photosensitizers for PDT of prostate cancer, namely compounds SiPc-PQ(PSMAi)2 and SiPc-OSi(PSMAi)2. These compounds share the same PSMA-binding motif, but differ in the linker that connects the inhibitor moiety to the Si(IV) atom: an alkoxy (Si−O−C) bond for SiPc-PQ(PSMAi)2, and a silyloxy (Si−O−Si) bond for SiPc-OSi(PSMAi)2. Both compounds were synthesized by a facile synthetic route and fully characterized by 2D NMR, mass spectrometry and absorption/fluorescence spectrophotometry. The PDT agents showed a suitable solubility in water, where they essentially exist in monomeric form. SiPc-PQ(PSMAi)2 showed a higher singlet oxygen quantum yield ΦΔ, higher fluorescence quantum yields ΦF and better photostability than SiPc-OSi(PSMAi)2. Both compounds were efficiently taken up by PSMA(+) PC3-PIP cells, but not by PSMA(−) PC3-FLU cells. However, SiPc-PQ(PSMAi)2 showed a more specific photoinduced cytotoxicity in vitro, which is likely attributable to a better stability of its water solutions.
File in questo prodotto:
File Dimensione Formato  
ChemMedChem - 2024 - Capozza.pdf

file ad accesso aperto

Licenza: Dominio pubblico
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/191682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact