Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We continuously need to coordinate multiple processes to accomplish our current goals. By means of its connection with multiple other areas of the brain, the prefrontal cortex (PF) plays a pivotal role in this cognitive challenge [1]. Neurons in PF are known to represent task-relevant information and to memorize current goals until the proper action can be selected. However, how PF neurons transform the goals into specific actions is not completely understood yet. To address this question, we used an experimental task that resembles a situation in which an object needs to be maintained in memory and then perform a motor plan to reach it.
Two monkeys were trained to perform a distance discrimination task [2] while the activity of neurons in PF were recorded. All procedures followed the Guide for the Care and Use of Laboratory Animals (1996, SBN 0-309-05377-3) and were approved by the NIMH Animal Care and Use Committee. The monkeys had to decide which of two stimuli (blue or red) sequentially presented on a screen was farther from a reference point. A working memory period separated the end of the presentation of the second stimulus from the reappearance of both stimuli (goals) that served as a “goal” signal. The positions of the two goals were randomized so that, during the working memory period, the monkeys could not predict the future action to perform. Thus, during the delay period the monkeys had to remember the goal (blue or red) and then to select it by touching the corresponding switch below. We found that only a minority of neurons were involved in both the encoding of the goal in memory and the transformation of it into an action by representing the goal also in this phase. Moreover, in equal proportion, they switched or maintained their goal preference across such transition. Such high probability in the change of preference did not occur in other periods of the task and therefore we interpreted it as a signature of an activity reconfiguration of the PF network due to a transition between different collective states.
From a theoretical point of view, the active maintenance of goal information in memory requires some degree of stability whereas, by contrast, the same network needs to be susceptible and flexible enough to adapt to the external changes. To account for such dynamics, we propose that the PF network is composed of bistable cell assemblies with heterogeneous excitability [3] such that both dynamical stability and input susceptibility can be simultaneous expressed. Moreover, we show that, although the neurons that represent the goal both in memory and during the goal to action transformation process are only a minority of all neurons, they can play a fundamental role in the PF activity reconfiguration.
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2
Rubchinsky, Leonid L.;Ahn, Sungwoo;Klijn, Wouter;Cumming, Ben;Yates, Stuart;Karakasis, Vasileios;Peyser, Alexander;Woodman, Marmaduke;Diaz-Pier, Sandra;Deraeve, James;Vassena, Eliana;Alexander, William;Beeman, David;Kudela, Pawel;Boatman-Reich, Dana;Anderson, William S.;Luque, Niceto R.;Naveros, Francisco;Carrillo, Richard R.;Ros, Eduardo;Arleo, Angelo;Huth, Jacob;Ichinose, Koki;Park, Jihoon;Kawai, Yuji;Suzuki, Junichi;Mori, Hiroki;Asada, Minoru;Oprisan, Sorinel A.;Dave, Austin I.;Babaie, Tahereh;Robinson, Peter;Tabas, Alejandro;Andermann, Martin;Rupp, André;Balaguer-Ballester, Emili;Lindén, Henrik;Christensen, Rasmus K.;Nakamura, Mari;Barkat, Tania R.;Tosi, Zach;Beggs, John;Lonardoni, Davide;Boi, Fabio;Di Marco, Stefano;Maccione, Alessandro;Berdondini, Luca;Jędrzejewska-Szmek, Joanna;Dorman, Daniel B.;Blackwell, Kim T.;Bauermeister, Christoph;Keren, Hanna;Braun, Jochen;Dornas, João V.;Mavritsaki, Eirini;Aldrovandi, Silvio;Bridger, Emma;Lim, Sukbin;Brunel, Nicolas;Buchin, Anatoly;Kerr, Clifford Charles;Chizhov, Anton;Huberfeld, Gilles;Miles, Richard;Gutkin, Boris;Spencer, Martin J.;Meffin, Hamish;Grayden, David B.;Burkitt, Anthony N.;Davey, Catherine E.;Tao, Liangyu;Tiruvadi, Vineet;Ali, Rehman;Mayberg, Helen;Butera, Robert;Gunay, Cengiz;Lamb, Damon;Calabrese, Ronald L.;Doloc-Mihu, Anca;López-Madrona, Víctor J.;Matias, Fernanda S.;Pereda, Ernesto;Mirasso, Claudio R.;Canals, Santiago;Geminiani, Alice;Pedrocchi, Alessandra;D’Angelo, Egidio;Casellato, Claudia;Chauhan, Ankur;Soman, Karthik;Srinivasa Chakravarthy, V.;Muddapu, Vignayanandam R.;Chuang, Chao-Chun;Chen, Nan-yow;Bayati, Mehdi;Melchior, Jan;Wiskott, Laurenz;Azizi, Amir Hossein;Diba, Kamran;Cheng, Sen;Smirnova, Elena Y.;Yakimova, Elena G.;Chizhov, Anton V.;Chen, Nan-Yow;Shih, Chi-Tin;Florescu, Dorian;Coca, Daniel;Courtiol, Julie;Jirsa, Viktor K.;Covolan, Roberto J. M.;Teleńczuk, Bartosz;Kempter, Richard;Curio, Gabriel;Destexhe, Alain;Parker, Jessica;Klishko, Alexander N.;Prilutsky, Boris I.;Cymbalyuk, Gennady;Franke, Felix;Hierlemann, Andreas;da Silveira, Rava Azeredo;Casali, Stefano;Masoli, Stefano;Rizza, Martina;Rizza, Martina Francesca;Masoli, Stefano;Sun, Yinming;Wong, Willy;Farzan, Faranak;Blumberger, Daniel M.;Daskalakis, Zafiris J.;Popovych, Svitlana;Viswanathan, Shivakumar;Rosjat, Nils;Grefkes, Christian;Daun, Silvia;Gentiletti, Damiano;Suffczynski, Piotr;Gnatkovski, Vadym;De Curtis, Marco;Lee, Hyeonsu;Paik, Se-Bum;Choi, Woochul;Jang, Jaeson;Park, Youngjin;Song, Jun Ho;Song, Min;Pallarés, Vicente;Gilson, Matthieu;Kühn, Simone;Insabato, Andrea;Deco, Gustavo;Glomb, Katharina;Ponce-Alvarez, Adrián;Ritter, Petra;Gilson, Matthieu;Campo, Adria Tauste;Thiele, Alexander;Deeba, Farah;Robinson, P. A.;van Albada, Sacha J.;Rowley, Andrew;Hopkins, Michael;Schmidt, Maximilian;Stokes, Alan B.;Lester, David R.;Furber, Steve;Diesmann, Markus;Barri, Alessandro;Wiechert, Martin T.;DiGregorio, David A.;Dimitrov, Alexander G.;Vich, Catalina;Berg, Rune W.;Guillamon, Antoni;Ditlevsen, Susanne;Cazé, Romain D.;Girard, Benoît;Doncieux, Stéphane;Doyon, Nicolas;Boahen, Frank;Desrosiers, Patrick;Laurence, Edward;Doyon, Nicolas;Dubé, Louis J.;Eleonora, Russo;Durstewitz, Daniel;Schmidt, Dominik;Mäki-Marttunen, Tuomo;Krull, Florian;Bettella, Francesco;Metzner, Christoph;Devor, Anna;Djurovic, Srdjan;Dale, Anders M.;Andreassen, Ole A.;Einevoll, Gaute T.;Næss, Solveig;Ness, Torbjørn V.;Halnes, Geir;Halgren, Eric;Halnes, Geir;Mäki-Marttunen, Tuomo;Pettersen, Klas H.;Andreassen, Ole A.;Sætra, Marte J.;Hagen, Espen;Schiffer, Alina;Grzymisch, Axel;Persike, Malte;Ernst, Udo;Harnack, Daniel;Ernst, Udo A.;Tomen, Nergis;Zucca, Stefano;Pasquale, Valentina;Pica, Giuseppe;Molano-Mazón, Manuel;Chiappalone, Michela;Panzeri, Stefano;Fellin, Tommaso;Oie, Kelvin S.;Boothe, David L.;Crone, Joshua C.;Yu, Alfred B.;Felton, Melvin A.;Zulfiqar, Isma;Moerel, Michelle;De Weerd, Peter;Formisano, Elia;Boothe, David L.;Crone, Joshua C.;Felton, Melvin A.;Oie, Kelvin;Franaszczuk, Piotr;Diggelmann, Roland;Fiscella, Michele;Hierlemann, Andreas;Franke, Felix;Guarino, Domenico;Antolík, Jan;Davison, Andrew P.;Frègnac, Yves;Etienne, Benjamin Xavier;Frohlich, Flavio;Lefebvre, Jérémie;Marcos, Encarni;Mattia, Maurizio;Genovesio, Aldo;Fedorov, Leonid A.;Dijkstra, Tjeerd M. H.;Sting, Louisa;Hock, Howard;Giese, Martin A.;Buhry, Laure;Langlet, Clément;Giovannini, Francesco;Verbist, Christophe;Salvadé, Stefano;Giugliano, Michele;Henderson, James A.;Wernecke, Hendrik;Sándor, Bulcsú;Gros, Claudius;Voges, Nicole;Dabrovska, Paulina;Riehle, Alexa;Brochier, Thomas;Grün, Sonja;Gu, Yifan;Gong, Pulin;Dumont, Grégory;Novikov, Nikita A.;Gutkin, Boris S.;Tewatia, Parul;Eriksson, Olivia;Kramer, Andrei;Santos, Joao;Jauhiainen, Alexandra;Kotaleski, Jeanette H.;Belić, Jovana J.;Kumar, Arvind;Kotaleski, Jeanette Hellgren;Shimono, Masanori;Hatano, Naomichi;Ahmad, Subutai;Cui, Yuwei;Hawkins, Jeff;Senk, Johanna;Korvasová, Karolína;Tetzlaff, Tom;Helias, Moritz;Kühn, Tobias;Denker, Michael;Mana, PierGianLuca;Grün, Sonja;Dahmen, David;Schuecker, Jannis;Goedeke, Sven;Keup, Christian;Goedeke, Sven;Heuer, Katja;Bakker, Rembrandt;Tiesinga, Paul;Toro, Roberto;Qin, Wei;Hadjinicolaou, Alex;Grayden, David B.;Ibbotson, Michael R.;Kameneva, Tatiana;Lytton, William W.;Mulugeta, Lealem;Drach, Andrew;Myers, Jerry G.;Horner, Marc;Vadigepalli, Rajanikanth;Morrison, Tina;Walton, Marlei;Steele, Martin;Anthony Hunt, C.;Tam, Nicoladie;Amaducci, Rodrigo;Muñiz, Carlos;Reyes-Sánchez, Manuel;Rodríguez, Francisco B.;Varona, Pablo;Cronin, Joseph T.;Hennig, Matthias H.;Iavarone, Elisabetta;Yi, Jane;Shi, Ying;Zandt, Bas-Jan;Van Geit, Werner;Rössert, Christian;Markram, Henry;Hill, Sean;O’Reilly, Christian;Iavarone, Elisabetta;Shi, Ying;Perin, Rodrigo;Lu, Huanxiang;Zandt, Bas-Jan;Bryson, Alexander;Rössert, Christian;Hadrava, Michal;Hlinka, Jaroslav;Hosaka, Ryosuke;Olenik, Mark;Houghton, Conor;Iannella, Nicolangelo;Launey, Thomas;Kameneva, Tatiana;Kotsakidis, Rebecca;Meffin, Hamish;Soriano, Jaymar;Kubo, Takatomi;Inoue, Takao;Kida, Hiroyuki;Yamakawa, Toshitaka;Suzuki, Michiyasu;Ikeda, Kazushi;Abbasi, Samira;Hudson, Amber E.;Heck, Detlef H.;Jaeger, Dieter;Lee, Joel;Abbasi, Samira;Janušonis, Skirmantas;Saggio, Maria Luisa;Spiegler, Andreas;Stacey, William C.;Bernard, Christophe;Lillo, Davide;Bernard, Christophe;Petkoski, Spase;Spiegler, Andreas;Drakesmith, Mark;Jones, Derek K.;Zadeh, Ali Sadegh;Kambhampati, Chandra;Karbowski, Jan;Kaya, Zeynep Gokcen;Lakretz, Yair;Treves, Alessandro;Li, Lily W.;Lizier, Joseph;Kerr, Cliff C.;Masquelier, Timothée;Kheradpisheh, Saeed Reza;Kim, Hojeong;Kim, Chang Sub;Marakshina, Julia A.;Vartanov, Alexander V.;Neklyudova, Anastasia A.;Kozlovskiy, Stanislav A.;Kiselnikov, Andrey A.;Taniguchi, Kanako;Kitano, Katsunori;Schmitt, Oliver;Lessmann, Felix;Schwanke, Sebastian;Eipert, Peter;Meinhardt, Jennifer;Beier, Julia;Kadir, Kanar;Karnitzki, Adrian;Sellner, Linda;Klünker, Ann-Christin;Kuch, Lena;Ruß, Frauke;Jenssen, Jörg;Wree, Andreas;Sanz-Leon, Paula;Knock, Stuart A.;Chien, Shih-Cheng;Maess, Burkhard;Knösche, Thomas R.;Cohen, Charles C.;Popovic, Marko A.;Klooster, Jan;Kole, Maarten H. P.;Roberts, Erik A.;Kopell, Nancy J.;Kepple, Daniel;Giaffar, Hamza;Rinberg, Dima;Koulakov, Alex;Forlim, Caroline Garcia;Klock, Leonie;Bächle, Johanna;Stoll, Laura;Giemsa, Patrick;Fuchs, Marie;Schoofs, Nikola;Montag, Christiane;Gallinat, Jürgen;Lee, Ray X.;Stephens, Greg J.;Kuhn, Bernd;Tauffer, Luiz;Isope, Philippe;Inoue, Katsuma;Ohmura, Yoshiyuki;Yonekura, Shogo;Kuniyoshi, Yasuo;Jang, Hyun Jae;Kwag, Jeehyun;de Kamps, Marc;Lai, Yi Ming;dos Santos, Filipa;Lam, K. P.;Andras, Peter;Imperatore, Julia;Helms, Jessica;Tompa, Tamas;Lavin, Antonieta;Inkpen, Felicity H.;Ashby, Michael C.;Lepora, Nathan F.;Shifman, Aaron R.;Lewis, John E.;Zhang, Zhong;Feng, Yeqian;Tetzlaff, Christian;Kulvicius, Tomas;Li, Yinyun;Pena, Rodrigo F. O.;Bernardi, Davide;Roque, Antonio C.;Lindner, Benjamin;Bernardi, Davide;Vellmer, Sebastian;Saudargiene, Ausra;Maninen, Tiina;Havela, Riikka;Linne, Marja-Leena;Powanwe, Arthur;Longtin, Andre;Naveros, Francisco;Garrido, Jesús A.;Graham, Joe W.;Dura-Bernal, Salvador;Angulo, Sergio L.;Neymotin, Samuel A.;Antic, Srdjan D.
2017-01-01
Abstract
We continuously need to coordinate multiple processes to accomplish our current goals. By means of its connection with multiple other areas of the brain, the prefrontal cortex (PF) plays a pivotal role in this cognitive challenge [1]. Neurons in PF are known to represent task-relevant information and to memorize current goals until the proper action can be selected. However, how PF neurons transform the goals into specific actions is not completely understood yet. To address this question, we used an experimental task that resembles a situation in which an object needs to be maintained in memory and then perform a motor plan to reach it.
Two monkeys were trained to perform a distance discrimination task [2] while the activity of neurons in PF were recorded. All procedures followed the Guide for the Care and Use of Laboratory Animals (1996, SBN 0-309-05377-3) and were approved by the NIMH Animal Care and Use Committee. The monkeys had to decide which of two stimuli (blue or red) sequentially presented on a screen was farther from a reference point. A working memory period separated the end of the presentation of the second stimulus from the reappearance of both stimuli (goals) that served as a “goal” signal. The positions of the two goals were randomized so that, during the working memory period, the monkeys could not predict the future action to perform. Thus, during the delay period the monkeys had to remember the goal (blue or red) and then to select it by touching the corresponding switch below. We found that only a minority of neurons were involved in both the encoding of the goal in memory and the transformation of it into an action by representing the goal also in this phase. Moreover, in equal proportion, they switched or maintained their goal preference across such transition. Such high probability in the change of preference did not occur in other periods of the task and therefore we interpreted it as a signature of an activity reconfiguration of the PF network due to a transition between different collective states.
From a theoretical point of view, the active maintenance of goal information in memory requires some degree of stability whereas, by contrast, the same network needs to be susceptible and flexible enough to adapt to the external changes. To account for such dynamics, we propose that the PF network is composed of bistable cell assemblies with heterogeneous excitability [3] such that both dynamical stability and input susceptibility can be simultaneous expressed. Moreover, we show that, although the neurons that represent the goal both in memory and during the goal to action transformation process are only a minority of all neurons, they can play a fundamental role in the PF activity reconfiguration.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/191130
Citazioni
ND
ND
0
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.