Studies on the neuronal correlates of decision making have demonstrated that the continuous flow of sensorial information is integrated by sensorimotor brain areas in order to select one among simultaneously represented targets and potential actions. In contrast, little is known about how these areas integrate memory information to lead to similar decisions. Using serial order learning, we explore how fragments of information, learned and stored independently (e.g., A > B and B > C), are linked in an abstract representation according to their reciprocal relations (such as A > B > C) and how this representation can be accessed and manipulated to make decisions. We show that manipulating information after learning occurs with increased difficulty as logical relationships get closer in the mental map and that the activity of neurons in the dorsal premotor cortex (PMd) encodes the difficulty level during target selection for motor decision making at the single-neuron and population levels.

Dorsal premotor cortex neurons signal the Level of choice difficulty during logical decisions

Genovesio A.;
2020-01-01

Abstract

Studies on the neuronal correlates of decision making have demonstrated that the continuous flow of sensorial information is integrated by sensorimotor brain areas in order to select one among simultaneously represented targets and potential actions. In contrast, little is known about how these areas integrate memory information to lead to similar decisions. Using serial order learning, we explore how fragments of information, learned and stored independently (e.g., A > B and B > C), are linked in an abstract representation according to their reciprocal relations (such as A > B > C) and how this representation can be accessed and manipulated to make decisions. We show that manipulating information after learning occurs with increased difficulty as logical relationships get closer in the mental map and that the activity of neurons in the dorsal premotor cortex (PMd) encodes the difficulty level during target selection for motor decision making at the single-neuron and population levels.
File in questo prodotto:
File Dimensione Formato  
Mione_Dorsal_2020.pdf

file disponibile solo agli amministratori

Licenza: DRM non definito
Dimensione 3.09 MB
Formato Adobe PDF
3.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/191104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact