Trace amines (TAs) are endogenous neuromodulators that play a functional role in the synaptic transmission within central nervous system (CNS), targeting trace amine-associated receptors (TAARs). Starting from our previous computational studies on TAAR1 and TAAR5 interactions with the unselective ligand 3-iodothyronamine (T(1)AM), we investigated the functional activity at murine and human TAAR1 and murine TAAR5 receptors of twenty-seven biguanide-based derivatives, including six newly synthesized compounds. Phenyl (BIG2, BIG4, BIG8 and BIG22) or benzyl (BIG10-BIG16) biguanides were found to be selective murine and human TAAR1 agonists with potencies in nanomolar or low micromolar range, respectively. In particular, compounds BIG2 and BIG12-BIG14 were the most promising and they could be considered valuable lead compounds worthy of further investigations. In addition to the interest for developing more effective human TAAR1 ligands, the disclosed here potent murine TAARI agonists could offer suitable tools for studying the pharmacology of TAAR1 receptor. (C) 2016 Elsevier Masson SAS. All rights reserved.

Novel biguanide-based derivatives scouted as TAAR1 agonists: Synthesis, biological evaluation, ADME prediction and molecular docking studies

Espinoza S;
2017-01-01

Abstract

Trace amines (TAs) are endogenous neuromodulators that play a functional role in the synaptic transmission within central nervous system (CNS), targeting trace amine-associated receptors (TAARs). Starting from our previous computational studies on TAAR1 and TAAR5 interactions with the unselective ligand 3-iodothyronamine (T(1)AM), we investigated the functional activity at murine and human TAAR1 and murine TAAR5 receptors of twenty-seven biguanide-based derivatives, including six newly synthesized compounds. Phenyl (BIG2, BIG4, BIG8 and BIG22) or benzyl (BIG10-BIG16) biguanides were found to be selective murine and human TAAR1 agonists with potencies in nanomolar or low micromolar range, respectively. In particular, compounds BIG2 and BIG12-BIG14 were the most promising and they could be considered valuable lead compounds worthy of further investigations. In addition to the interest for developing more effective human TAAR1 ligands, the disclosed here potent murine TAARI agonists could offer suitable tools for studying the pharmacology of TAAR1 receptor. (C) 2016 Elsevier Masson SAS. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/180844
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 41
social impact