In this work we classified EEG features connected with emotions elicited by musical videos. To detect emotions, we used a user-independent approach with data coming from multiple participants in order to test the "peak-end rule". Participant's video ratings were processed to create a mixed valence-arousal labelling. Input features were refined using a combination of feature ranking and data reduction based on intrinsic dimensionality search. Compared to previous literature, our results show that the proposed mixed arousal-valence classification is compatible with previous works applying a distinct arousal or valence classification.

User-Independent Classification of Emotions in a Mixed Arousal-Valence Model

Nascimben, Mauro
Primo
;
2019-01-01

Abstract

In this work we classified EEG features connected with emotions elicited by musical videos. To detect emotions, we used a user-independent approach with data coming from multiple participants in order to test the "peak-end rule". Participant's video ratings were processed to create a mixed valence-arousal labelling. Input features were refined using a combination of feature ranking and data reduction based on intrinsic dimensionality search. Compared to previous literature, our results show that the proposed mixed arousal-valence classification is compatible with previous works applying a distinct arousal or valence classification.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/180763
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact