We consider a nonlinear traction boundary value problem for the Lamé equations in an unbounded periodically perforated domain. The edges lengths of the periodicity cell are proportional to a positive parameter δ, whereas the relative size of the holes is determined by a second positive parameter ε. Under suitable assumptions on the nonlinearity, there exists a family of solutions (Formula presented.). We analyze the asymptotic behavior of two integral functionals associated to such a family of solutions when the perturbation parameter pair (ε, δ) is close to the degenerate value (0, 0).

Asymptotic behavior of integral functionals for a two-parameter singularly perturbed nonlinear traction problem

Luzzini P.;
2021-01-01

Abstract

We consider a nonlinear traction boundary value problem for the Lamé equations in an unbounded periodically perforated domain. The edges lengths of the periodicity cell are proportional to a positive parameter δ, whereas the relative size of the holes is determined by a second positive parameter ε. Under suitable assumptions on the nonlinearity, there exists a family of solutions (Formula presented.). We analyze the asymptotic behavior of two integral functionals associated to such a family of solutions when the perturbation parameter pair (ε, δ) is close to the degenerate value (0, 0).
File in questo prodotto:
File Dimensione Formato  
PerTracMMAS20200723.pdf

file disponibile solo agli amministratori

Licenza: DRM non definito
Dimensione 466.05 kB
Formato Adobe PDF
466.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/178743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact