We study the eigenvalues of time-harmonic Maxwell's equations in a cavity upon changes in the electric permittivity c of the medium. We prove that all the eigenvalues, both simple and multiple, are locally Lip-schitz continuous with respect to c. Next, we show that simple eigenvalues and the symmetric functions of multiple eigenvalues depend real analytically upon c and we provide an explicit formula for their derivative in c. As an application of these results, we show that for a generic permittivity all the Maxwell eigenvalues are simple. (c) 2022 Elsevier Inc. All rights reserved.

A few results on permittivity variations in electromagnetic cavities

Paolo Luzzini;
2022-01-01

Abstract

We study the eigenvalues of time-harmonic Maxwell's equations in a cavity upon changes in the electric permittivity c of the medium. We prove that all the eigenvalues, both simple and multiple, are locally Lip-schitz continuous with respect to c. Next, we show that simple eigenvalues and the symmetric functions of multiple eigenvalues depend real analytically upon c and we provide an explicit formula for their derivative in c. As an application of these results, we show that for a generic permittivity all the Maxwell eigenvalues are simple. (c) 2022 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
20220723ArxivPermVar.pdf

file disponibile solo agli amministratori

Licenza: DRM non definito
Dimensione 408.91 kB
Formato Adobe PDF
408.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0022039622003916-main.pdf

file disponibile solo agli amministratori

Licenza: DRM non definito
Dimensione 399.97 kB
Formato Adobe PDF
399.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/178742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact