We study the eigenvalues of time-harmonic Maxwell's equations in a cavity upon changes in the electric permittivity c of the medium. We prove that all the eigenvalues, both simple and multiple, are locally Lip-schitz continuous with respect to c. Next, we show that simple eigenvalues and the symmetric functions of multiple eigenvalues depend real analytically upon c and we provide an explicit formula for their derivative in c. As an application of these results, we show that for a generic permittivity all the Maxwell eigenvalues are simple. (c) 2022 Elsevier Inc. All rights reserved.
A few results on permittivity variations in electromagnetic cavities
Paolo Luzzini;
2022-01-01
Abstract
We study the eigenvalues of time-harmonic Maxwell's equations in a cavity upon changes in the electric permittivity c of the medium. We prove that all the eigenvalues, both simple and multiple, are locally Lip-schitz continuous with respect to c. Next, we show that simple eigenvalues and the symmetric functions of multiple eigenvalues depend real analytically upon c and we provide an explicit formula for their derivative in c. As an application of these results, we show that for a generic permittivity all the Maxwell eigenvalues are simple. (c) 2022 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
20220723ArxivPermVar.pdf
file disponibile solo agli amministratori
Licenza:
DRM non definito
Dimensione
408.91 kB
Formato
Adobe PDF
|
408.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0022039622003916-main.pdf
file disponibile solo agli amministratori
Licenza:
DRM non definito
Dimensione
399.97 kB
Formato
Adobe PDF
|
399.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.