Objective: To investigate glucose metrics and identify potential predictors of the achievement of glycemic outcomes in children and adolescents during their first 12 months of MiniMed 780G use. Research design and methods: This multicenter, longitudinal, real-world study recruited 368 children and adolescents with type 1 diabetes (T1D) starting SmartGuard technology between June 2020 and June 2022. Ambulatory glucose profile data were collected during a 15-day run-in period (baseline), 2 weeks after automatic mode activation, and every 3 months. The influence of covariates on glycemic outcomes after 1 year of MiniMed 780G use was assessed. Results: After 15 days of automatic mode use, all glucose metrics improved compared with baseline (P < 0.001), except for time below range (P = 0.113) and coefficient of variation (P = 0.330). After 1 year, time in range (TIR) remained significantly higher than at baseline (75.3% vs. 62.8%, P < 0.001). The mean glycated hemoglobin (HbA1c) over the study duration was lower than the previous year (6.9 ± 0.6% vs. 7.4 ± 0.9%, P < 0.001). Time spent in tight range (70-140 mg/dL) was 51.1%, and the glycemia risk index was 27.6. Higher TIR levels were associated with a reduced number of automatic correction boluses (P < 0.001), fewer SmartGuard exits (P = 0.021), and longer time in automatic mode (P = 0.030). Individuals with baseline HbA1c >8% showed more relevant improvement in TIR levels (from 54.3 to 72.3%). Conclusions: Our study highlights the sustained effectiveness of MiniMed 780G among youths with T1D. Findings suggest that even children and adolescents with low therapeutic engagement may benefit from SmartGuard technology.
Sustained Effectiveness of an Advanced Hybrid Closed Loop System in a Cohort of Children and Adolescents With Type 1 Diabetes: A 1-Year Real-World Study
Rabbone, Ivana;
2024-01-01
Abstract
Objective: To investigate glucose metrics and identify potential predictors of the achievement of glycemic outcomes in children and adolescents during their first 12 months of MiniMed 780G use. Research design and methods: This multicenter, longitudinal, real-world study recruited 368 children and adolescents with type 1 diabetes (T1D) starting SmartGuard technology between June 2020 and June 2022. Ambulatory glucose profile data were collected during a 15-day run-in period (baseline), 2 weeks after automatic mode activation, and every 3 months. The influence of covariates on glycemic outcomes after 1 year of MiniMed 780G use was assessed. Results: After 15 days of automatic mode use, all glucose metrics improved compared with baseline (P < 0.001), except for time below range (P = 0.113) and coefficient of variation (P = 0.330). After 1 year, time in range (TIR) remained significantly higher than at baseline (75.3% vs. 62.8%, P < 0.001). The mean glycated hemoglobin (HbA1c) over the study duration was lower than the previous year (6.9 ± 0.6% vs. 7.4 ± 0.9%, P < 0.001). Time spent in tight range (70-140 mg/dL) was 51.1%, and the glycemia risk index was 27.6. Higher TIR levels were associated with a reduced number of automatic correction boluses (P < 0.001), fewer SmartGuard exits (P = 0.021), and longer time in automatic mode (P = 0.030). Individuals with baseline HbA1c >8% showed more relevant improvement in TIR levels (from 54.3 to 72.3%). Conclusions: Our study highlights the sustained effectiveness of MiniMed 780G among youths with T1D. Findings suggest that even children and adolescents with low therapeutic engagement may benefit from SmartGuard technology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.