Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor that is expressed in brain and periphery and responds to a class of compounds called trace amines, such as -phenylethylamine (-PEA), tyramine, tryptamine, octopamine. The receptor is known to have a very rich pharmacology and could be also activated by different classes of compounds, including dopaminergic, adrenergic and serotonergic ligands. It is expected that targeting hTAAR1 could provide a novel pharmacological approach for several human disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder, Parkinson's disease and metabolic diseases. Only recently, a small number of selective hTAAR1 agonists (among which and T(1)AM) and antagonist (EPPTB), have been reported in literature. With the aim to identify new molecular entities able to act as ligands for this target, we used an homology model for the hTAAR1 and performed a virtual screening procedure on an in-house database of compounds. A number of interesting molecules were selected and by testing them in an in vitro assay we found several agonists and one antagonist, with activities in the low micromolar range. These compounds could represent the starting point for the development of more potent and selective TAAR1 ligands.

Further Insights Into the Pharmacology of the Human Trace Amine-Associated Receptors: Discovery of Novel Ligands for TAAR1 by a Virtual Screening Approach

Espinoza S;
2014-01-01

Abstract

Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor that is expressed in brain and periphery and responds to a class of compounds called trace amines, such as -phenylethylamine (-PEA), tyramine, tryptamine, octopamine. The receptor is known to have a very rich pharmacology and could be also activated by different classes of compounds, including dopaminergic, adrenergic and serotonergic ligands. It is expected that targeting hTAAR1 could provide a novel pharmacological approach for several human disorders, such as schizophrenia, depression, attention deficit hyperactivity disorder, Parkinson's disease and metabolic diseases. Only recently, a small number of selective hTAAR1 agonists (among which and T(1)AM) and antagonist (EPPTB), have been reported in literature. With the aim to identify new molecular entities able to act as ligands for this target, we used an homology model for the hTAAR1 and performed a virtual screening procedure on an in-house database of compounds. A number of interesting molecules were selected and by testing them in an in vitro assay we found several agonists and one antagonist, with activities in the low micromolar range. These compounds could represent the starting point for the development of more potent and selective TAAR1 ligands.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/172362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact