Purpose: To test the hypothesis that visual field (VF) progression can be predicted from baseline and longitudinal optical coherence tomography (OCT) structural measurements. Design: Prospective cohort study. Methods: A total of 104 eyes (104 patients) with ≥3 years of follow-up and ≥5 VF examinations were enrolled. We defined VF progression based on pointwise linear regression on 24-2 VF (≥3 locations with slope less than or equal to −1.0 dB/year and P <.01). We used elastic net logistic regression (ENR) and machine learning to predict VF progression with demographics, baseline circumpapillary retinal nerve fiber layer (RNFL), macular ganglion cell/inner plexiform layer (GCIPL) thickness, and RNFL and GCIPL change rates at central 24 superpixels and 3 eccentricities, 3.4°, 5.5°, and 6.8°, from fovea and hemimaculas. Areas-under-ROC curves (AUC) were used to compare models. Results: Average ± SD follow-up and VF examinations were 4.5 ± 0.9 years and 8.7 ± 1.6, respectively. VF progression was detected in 23 eyes (22%). ENR selected rates of change of superotemporal RNFL sector and GCIPL change rates in 5 central superpixels and at 3.4° and 5.6° eccentricities as the best predictor subset (AUC = 0.79 ± 0.12). Best machine learning predictors consisted of baseline superior hemimacular GCIPL thickness and GCIPL change rates at 3.4° eccentricity and 3 central superpixels (AUC = 0.81 ± 0.10). Models using GCIPL-only structural variables performed better than RNFL-only models. Conclusions: VF progression can be predicted with clinically relevant accuracy from baseline and longitudinal structural data. Further refinement of proposed models would assist clinicians with timely prediction of functional glaucoma progression and clinical decision making.

Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma

Rabiolo A.;
2021-01-01

Abstract

Purpose: To test the hypothesis that visual field (VF) progression can be predicted from baseline and longitudinal optical coherence tomography (OCT) structural measurements. Design: Prospective cohort study. Methods: A total of 104 eyes (104 patients) with ≥3 years of follow-up and ≥5 VF examinations were enrolled. We defined VF progression based on pointwise linear regression on 24-2 VF (≥3 locations with slope less than or equal to −1.0 dB/year and P <.01). We used elastic net logistic regression (ENR) and machine learning to predict VF progression with demographics, baseline circumpapillary retinal nerve fiber layer (RNFL), macular ganglion cell/inner plexiform layer (GCIPL) thickness, and RNFL and GCIPL change rates at central 24 superpixels and 3 eccentricities, 3.4°, 5.5°, and 6.8°, from fovea and hemimaculas. Areas-under-ROC curves (AUC) were used to compare models. Results: Average ± SD follow-up and VF examinations were 4.5 ± 0.9 years and 8.7 ± 1.6, respectively. VF progression was detected in 23 eyes (22%). ENR selected rates of change of superotemporal RNFL sector and GCIPL change rates in 5 central superpixels and at 3.4° and 5.6° eccentricities as the best predictor subset (AUC = 0.79 ± 0.12). Best machine learning predictors consisted of baseline superior hemimacular GCIPL thickness and GCIPL change rates at 3.4° eccentricity and 3 central superpixels (AUC = 0.81 ± 0.10). Models using GCIPL-only structural variables performed better than RNFL-only models. Conclusions: VF progression can be predicted with clinically relevant accuracy from baseline and longitudinal structural data. Further refinement of proposed models would assist clinicians with timely prediction of functional glaucoma progression and clinical decision making.
File in questo prodotto:
File Dimensione Formato  
nihms-1690784.pdf

file disponibile agli utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/170286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 21
social impact