This work focuses on the arenaceous reefs by the polychaete Sabellaria spinulosa and addresses microplastics pollution. The main aim is to assess microplastics amount in a bioconstruction located in the Adriatic coast of Italy (Mediterranean Sea) through a comparative approach: sea-floor sediment and bioconstruction samples were analysed to quantify microplastics absolute abundance in both substrates. A total of 431 MPs were found in the investigated substrates: respectively 85 % fibers and 15 % fragments. Multivariate analysis indicates that MPs within bioconstruction occur in higher abundances and with different morphologies than in sediment samples. The analysis of bioconstruction polished sections allowed for observation of MPs agglutinated in their original position: higher concentration is reported in inter-tube areas. Results suggest that physical characteristics of MPs could play a key-role in bioconstruction inclusion processes and raise questions on effective role of sabellariid bioconstructions as a trap for this pollutant in the littoral environment.

First attempt to quantify microplastics in Mediterranean Sabellaria spinulosa (Annelida, Polychaeta) bioconstructions

Croce, Alessandro;Gatti, Giorgio;
2023-01-01

Abstract

This work focuses on the arenaceous reefs by the polychaete Sabellaria spinulosa and addresses microplastics pollution. The main aim is to assess microplastics amount in a bioconstruction located in the Adriatic coast of Italy (Mediterranean Sea) through a comparative approach: sea-floor sediment and bioconstruction samples were analysed to quantify microplastics absolute abundance in both substrates. A total of 431 MPs were found in the investigated substrates: respectively 85 % fibers and 15 % fragments. Multivariate analysis indicates that MPs within bioconstruction occur in higher abundances and with different morphologies than in sediment samples. The analysis of bioconstruction polished sections allowed for observation of MPs agglutinated in their original position: higher concentration is reported in inter-tube areas. Results suggest that physical characteristics of MPs could play a key-role in bioconstruction inclusion processes and raise questions on effective role of sabellariid bioconstructions as a trap for this pollutant in the littoral environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/168143
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact