Lanthanide hydrogen-bonded organic frameworks (LnHOFs) are recently emerging as a novel versatile class of multicomponent luminescent materials with promising potential applications in optics and photonics. Trivalent europium (Eu3+) incorporated polymeric hydrogen-bonded triazine frameworks (PHTF:Eu) have been successfully obtained via a facile and low-cost thermal pyrolysis route. The PHTF:Eu material shows a porous frame structure principally composed of isocyanuric acid and ammelide as a minor constituent. Intense red luminescence with high colour-purity from Eu3+ is obtained by exciting over a broad absorption band peaked at 300 nm either at room or low temperature. The triazine-based host works as excellent optical antenna towards Eu3+, yielding similar to 42% sensitization efficiency (eta(sens)) and an intrinsic quantum yield of Eu3+ emission (Phi(Eu)) as high as similar to 46%. Temperature-dependent emission studies show that PHTF:Eu displays relatively high optical stability at elevated temperatures in comparison to traditional inorganic phosphors. The retrieved activation energy of 89 meV indicates that thermal quenching mechanisms are attributed to the intrinsic energy level structure of the metal-triazine assembly, possibly via a thermally activated back transfer to ligand triplet or CT states. Finally, by using an innovative approach based on excitation spectra, we demonstrate that PHTF:Eu can work as a universal primary self-referencing thermometer based on a single-emitting center with excellent relative sensitivity in the cryogenic temperature range.

Photophysical and Primary Self-Referencing Thermometric Properties of Europium Hydrogen-Bonded Triazine Frameworks

Mara, Dimitrije;Artizzu, Flavia
Co-ultimo
;
2022-01-01

Abstract

Lanthanide hydrogen-bonded organic frameworks (LnHOFs) are recently emerging as a novel versatile class of multicomponent luminescent materials with promising potential applications in optics and photonics. Trivalent europium (Eu3+) incorporated polymeric hydrogen-bonded triazine frameworks (PHTF:Eu) have been successfully obtained via a facile and low-cost thermal pyrolysis route. The PHTF:Eu material shows a porous frame structure principally composed of isocyanuric acid and ammelide as a minor constituent. Intense red luminescence with high colour-purity from Eu3+ is obtained by exciting over a broad absorption band peaked at 300 nm either at room or low temperature. The triazine-based host works as excellent optical antenna towards Eu3+, yielding similar to 42% sensitization efficiency (eta(sens)) and an intrinsic quantum yield of Eu3+ emission (Phi(Eu)) as high as similar to 46%. Temperature-dependent emission studies show that PHTF:Eu displays relatively high optical stability at elevated temperatures in comparison to traditional inorganic phosphors. The retrieved activation energy of 89 meV indicates that thermal quenching mechanisms are attributed to the intrinsic energy level structure of the metal-triazine assembly, possibly via a thermally activated back transfer to ligand triplet or CT states. Finally, by using an innovative approach based on excitation spectra, we demonstrate that PHTF:Eu can work as a universal primary self-referencing thermometer based on a single-emitting center with excellent relative sensitivity in the cryogenic temperature range.
File in questo prodotto:
File Dimensione Formato  
2022 Molecules.pdf

file ad accesso aperto

Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/150674
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact