Heart failure and acute myocardial infarction are conditions that are associated with high morbidity and mortality. Significant dysfunction of the heart muscle can occur as the consequence of end-stage chronic cardiovascular diseases or acute ischemic events that are marked by large infarction area and significant tissue necrosis. Despite the remarkable improvement of conventional treatments, a substantial proportion of patients still develops severe heart failure that can only be resolved by heart transplantation or mechanical device implantation. Therefore, novel approaches based on stem-cell therapy can directly modify the disease process and alter its prognosis. The ability of the stem-cells to modify and repair the injured myocardium is a challenging but intriguing concept that can potentially replace expensive and invasive methods of treatment that are associated with increased risks and significant financial costs. In that sense, granulocyte colony-stimulating factor (G-CSF) seems as an attractive treatment approach. Based on the series of pre-clinical experiments and a limited amount of clinical data, it was demonstrated that G-CSF agents possess the ability to mobilize stem-cells from bone marrow and induce their differentiation into cardiomyocytes or endothelial cells when brought into contact with injured regions of the myocardium. However, clinical benefits of G-CSF use in damaged myocardium remain unclear and are the topic of expert discussion. The main goal of this review is to present relevant and up-to-date evidence on G-CSF therapy use in pre-clinical models and in humans and to provide a rationale for its potential clinical applications in the future.

Granulocyte colony-stimulating factor for the treatment of cardiovascular diseases: An update with a critical appraisal

D'Amario D;
2018-01-01

Abstract

Heart failure and acute myocardial infarction are conditions that are associated with high morbidity and mortality. Significant dysfunction of the heart muscle can occur as the consequence of end-stage chronic cardiovascular diseases or acute ischemic events that are marked by large infarction area and significant tissue necrosis. Despite the remarkable improvement of conventional treatments, a substantial proportion of patients still develops severe heart failure that can only be resolved by heart transplantation or mechanical device implantation. Therefore, novel approaches based on stem-cell therapy can directly modify the disease process and alter its prognosis. The ability of the stem-cells to modify and repair the injured myocardium is a challenging but intriguing concept that can potentially replace expensive and invasive methods of treatment that are associated with increased risks and significant financial costs. In that sense, granulocyte colony-stimulating factor (G-CSF) seems as an attractive treatment approach. Based on the series of pre-clinical experiments and a limited amount of clinical data, it was demonstrated that G-CSF agents possess the ability to mobilize stem-cells from bone marrow and induce their differentiation into cardiomyocytes or endothelial cells when brought into contact with injured regions of the myocardium. However, clinical benefits of G-CSF use in damaged myocardium remain unclear and are the topic of expert discussion. The main goal of this review is to present relevant and up-to-date evidence on G-CSF therapy use in pre-clinical models and in humans and to provide a rationale for its potential clinical applications in the future.
File in questo prodotto:
File Dimensione Formato  
D'Amario D et al_ 2018.pdf

file disponibile solo agli amministratori

Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/147141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact