In this paper, we recall actuarial and financial applications of sums of dependent random variables that follow a non-Gaussian mean-reverting process and contemplate distribution approximations. Our work complements previous related studies restricted to lognormal random variables; we revisit previous approximations and suggest new ones. We then derive moment-based distribution approximations for random sums attuned to Asian option pricing and computation of risk measures of random annuities. Various numerical experiments highlight the speed–accuracy benefits of the proposed methods.
Moment-matching approximations for stochastic sums in non-Gaussian Ornstein-Uhlenbeck models
Ioannis Kyriakou
;Gianluca Fusai
2021-01-01
Abstract
In this paper, we recall actuarial and financial applications of sums of dependent random variables that follow a non-Gaussian mean-reverting process and contemplate distribution approximations. Our work complements previous related studies restricted to lognormal random variables; we revisit previous approximations and suggest new ones. We then derive moment-based distribution approximations for random sums attuned to Asian option pricing and computation of risk measures of random annuities. Various numerical experiments highlight the speed–accuracy benefits of the proposed methods.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SSRN-id3744041.pdf
file ad accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.