Skin substitutes are epidermal, dermal or complete bilayered constructs, composed by natural or synthetic scaffolds and by adherent cells such as fibroblasts, keratinocytes or mesenchymal stem cells. Silk fibroin is a promising polymer to realize scaffolds, since it is biocompatible, biodegradable, and exhibits excellent mechanical properties in terms of tensile strength. Moreover, fibroin can be added of others components in order to modify the biomaterial properties for the purpose. The aim of this work is to prepare silk fibroin films for adipose derived stem cell (ADSCs) culture as a novel feeder layer for skin tissue engineering. Pectin has been added to promote the protein conformational transition and construct strength, while glycerol as plasticizer, providing biomaterial flexibility. Eighteen formulations were prepared by casting method by blending fibroin, pectin (range 1-10% w/w), and glycerol (range 0-20% w/w); films were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry assay, to select the optimal composition. A stable fibroin conformation was obtained using 6% pectin, and the best mechanical properties were obtained using 12% w/w glycerol. Films were sterilized, and human ADSCs were seeded and cultured for 15 days. Cells adhere to the support assuming a fibroblastic-like shape reaching confluence. The ultrastructural analysis evidences typical active-cell features and adhesion structures that promote cell anchorage to the film, thus developing a multilayered cell structure. This construct could be advantageously employed in cutaneous wound healing or where the use of ADSCs is indicated either in human or veterinary field.

Formulation and characterization of silk fibroin films as a scaffold for adipose-derived stem cells in skin tissue engineering

Torre M. L.
2013-01-01

Abstract

Skin substitutes are epidermal, dermal or complete bilayered constructs, composed by natural or synthetic scaffolds and by adherent cells such as fibroblasts, keratinocytes or mesenchymal stem cells. Silk fibroin is a promising polymer to realize scaffolds, since it is biocompatible, biodegradable, and exhibits excellent mechanical properties in terms of tensile strength. Moreover, fibroin can be added of others components in order to modify the biomaterial properties for the purpose. The aim of this work is to prepare silk fibroin films for adipose derived stem cell (ADSCs) culture as a novel feeder layer for skin tissue engineering. Pectin has been added to promote the protein conformational transition and construct strength, while glycerol as plasticizer, providing biomaterial flexibility. Eighteen formulations were prepared by casting method by blending fibroin, pectin (range 1-10% w/w), and glycerol (range 0-20% w/w); films were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry assay, to select the optimal composition. A stable fibroin conformation was obtained using 6% pectin, and the best mechanical properties were obtained using 12% w/w glycerol. Films were sterilized, and human ADSCs were seeded and cultured for 15 days. Cells adhere to the support assuming a fibroblastic-like shape reaching confluence. The ultrastructural analysis evidences typical active-cell features and adhesion structures that promote cell anchorage to the film, thus developing a multilayered cell structure. This construct could be advantageously employed in cutaneous wound healing or where the use of ADSCs is indicated either in human or veterinary field.
File in questo prodotto:
File Dimensione Formato  
49 Chlapanidas et al 13 IJIP.pdf

file disponibile solo agli amministratori

Dimensione 3.42 MB
Formato Adobe PDF
3.42 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/144450
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 234
social impact