The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven.

Recent Advances in Bacterial Amelioration of Plant Drought and Salt Stress

Gamalero E
;
2022-01-01

Abstract

The recent literature indicates that plant growth-promoting bacteria (PGPB) employ a range of mechanisms to augment a plant’s ability to ameliorate salt and drought stress. These mechanisms include synthesis of auxins, especially indoleacetic acid, which directly promotes plant growth; synthesis of antioxidant enzymes such as catalase, superoxide dismutase and peroxidase, which prevents the deleterious effects of reactive oxygen species; synthesis of small molecule osmolytes, e.g., trehalose and proline, which structures the water content within plant and bacterial cells and reduces plant turgor pressure; nitrogen fixation, which directly improves plant growth; synthesis of exopolysaccharides, which protects plant cells from water loss and stabilizes soil aggregates; synthesis of antibiotics, which protects stress-debilitated plants from soil pathogens; and synthesis of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which lowers the level of ACC and ethylene in plants, thereby decreasing stress-induced plant senescence. Many of the reports of overcoming these plant stresses indicate that the most successful PGPB possess several of these mechanisms; however, the involvement of any particular mechanism in plant protection is nearly always inferred and not proven.
File in questo prodotto:
File Dimensione Formato  
biology-11-00437 stampa.pdf

file ad accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 754.32 kB
Formato Adobe PDF
754.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/141741
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 68
social impact