Simple Summary Extracellular ATP is highly concentrated in tumor stroma. In this study, we investigated the effects of the synthetic ATP analog Benzoylbenzoyl-ATP, 2 '(3 ')-O-(4-Benzoylbenzoyl)adenosine 5 '-triphosphate (BzATP), an agonist for P2X receptors, on tumor-derived endothelial cells (TEC) obtained from three different human tumors (breast, kidney and prostate carcinomas, respectively, BTEC, RTEC and PTEC). Treatment with high BzATP concentrations (100 mu M) significantly reduced migration of all TEC types, resulting ineffective on human normal microvascular endothelium (HMEC); intriguingly, both the functional effect and associated calcium signals are sensitive to some key biological parameters of tumor stroma that include pH, Ca2+ and Zn2+. The lack of calcium signals selectively observed in PTEC, in which BzATP still retains its functional effect, suggests variability of intracellular signaling among TEC. These findings provide novel insights into the role of extracellular ATP as a multisensory regulator of migratory potential in tumoral endothelium. The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 mu M), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.

P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium

Distasi, Carla;Dionisi, Marianna;
2022-01-01

Abstract

Simple Summary Extracellular ATP is highly concentrated in tumor stroma. In this study, we investigated the effects of the synthetic ATP analog Benzoylbenzoyl-ATP, 2 '(3 ')-O-(4-Benzoylbenzoyl)adenosine 5 '-triphosphate (BzATP), an agonist for P2X receptors, on tumor-derived endothelial cells (TEC) obtained from three different human tumors (breast, kidney and prostate carcinomas, respectively, BTEC, RTEC and PTEC). Treatment with high BzATP concentrations (100 mu M) significantly reduced migration of all TEC types, resulting ineffective on human normal microvascular endothelium (HMEC); intriguingly, both the functional effect and associated calcium signals are sensitive to some key biological parameters of tumor stroma that include pH, Ca2+ and Zn2+. The lack of calcium signals selectively observed in PTEC, in which BzATP still retains its functional effect, suggests variability of intracellular signaling among TEC. These findings provide novel insights into the role of extracellular ATP as a multisensory regulator of migratory potential in tumoral endothelium. The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 mu M), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors.
File in questo prodotto:
File Dimensione Formato  
cancers-14-02743-v2.pdf

file ad accesso aperto

Descrizione: articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/142499
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact