A recently developed synthetic protocol allowed for the functionalization of the active peptide A9 with a fluorogenic probe, which is useful for studying biomolecular interactions. Essentially, a nucleophilic attack on a halo-substituted benzofurazan is selectively performed by a cysteine sulfhydryl group. The process is assisted by the basic catalysis of activated zeolites (4 Å molecular sieves) and promoted by microwave irradiation. Fluorescence studies revealed that a donor-acceptor pair within the peptide sequence was introduced, thus allowing a deeper investigation on the interaction process between the peptide ligand and its receptor fragment. The obtained results allowed us to come full circle for all the currently understood structural determinants that were found to be involved in the binding process.
Fluorescence Studies: A9 Peptide, Functionalized with a Fluorogenic Probe, Interacts with Its Receptor Model HER2-DIVMP
Digilio G.Writing – Review & Editing
;Miletto I.Methodology
;
2022-01-01
Abstract
A recently developed synthetic protocol allowed for the functionalization of the active peptide A9 with a fluorogenic probe, which is useful for studying biomolecular interactions. Essentially, a nucleophilic attack on a halo-substituted benzofurazan is selectively performed by a cysteine sulfhydryl group. The process is assisted by the basic catalysis of activated zeolites (4 Å molecular sieves) and promoted by microwave irradiation. Fluorescence studies revealed that a donor-acceptor pair within the peptide sequence was introduced, thus allowing a deeper investigation on the interaction process between the peptide ligand and its receptor fragment. The obtained results allowed us to come full circle for all the currently understood structural determinants that were found to be involved in the binding process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.