In human atrial myocytes the transient outward current I(to) develops a conspicuous faster inactivation with increasing temperatures. Since β-subunits are known to modulate I(to) current kinetics, we hypothesized that the temperature sensitivity of I(to) is not only determined by the property of the ion-passing α-subunit Kv4.3 but also by its interaction with accessory β-subunits. We therefore studied the influence of the transmembrane β-subunits KCNE1, KCNE2 and DPP6 on Kv4.3/KChIP2 channels in CHO cells at room temperature and at physiological temperature. Exposure to 37°C caused a significant acceleration of the channel kinetics, whereas current densities and voltage dependences remained unaltered at 37°C compared to 23°C. However, Kv4.3/KChIP2 channels without transmembrane β-subunits showed the strongest temperature sensitivity with considerably increased rates of activation and inactivation at 37°C. KCNE2 significantly slowed the current kinetics at 37°C compared to Kv4.3/KChIP2 channels, whereas KCNE1 did not influence the channel properties at both temperatures. Interestingly, the accelerating effects of DPP6 on current kinetics described at 23°C were diminished at physiological temperature, thus at 37°C current kinetics became remarkably similar for channel complexes Kv4.3/KChIP2 with and without DPP6 isoforms. A Markov state model was developed on the basis of experimental measurements to simulate the influence of β-subunits on Kv4.3 channel complex at both temperatures. In conclusion, the remarkably fast kinetics of the native I(to) at 37°C could be reproduced by co-expressing Kv4.3, KChIP2, KCNE2 and DPP6 in CHO cells, whereas the high temperature sensitivity of human I(to) could be not mimicked.

Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes.

COTELLA, DIEGO;
2013-01-01

Abstract

In human atrial myocytes the transient outward current I(to) develops a conspicuous faster inactivation with increasing temperatures. Since β-subunits are known to modulate I(to) current kinetics, we hypothesized that the temperature sensitivity of I(to) is not only determined by the property of the ion-passing α-subunit Kv4.3 but also by its interaction with accessory β-subunits. We therefore studied the influence of the transmembrane β-subunits KCNE1, KCNE2 and DPP6 on Kv4.3/KChIP2 channels in CHO cells at room temperature and at physiological temperature. Exposure to 37°C caused a significant acceleration of the channel kinetics, whereas current densities and voltage dependences remained unaltered at 37°C compared to 23°C. However, Kv4.3/KChIP2 channels without transmembrane β-subunits showed the strongest temperature sensitivity with considerably increased rates of activation and inactivation at 37°C. KCNE2 significantly slowed the current kinetics at 37°C compared to Kv4.3/KChIP2 channels, whereas KCNE1 did not influence the channel properties at both temperatures. Interestingly, the accelerating effects of DPP6 on current kinetics described at 23°C were diminished at physiological temperature, thus at 37°C current kinetics became remarkably similar for channel complexes Kv4.3/KChIP2 with and without DPP6 isoforms. A Markov state model was developed on the basis of experimental measurements to simulate the influence of β-subunits on Kv4.3 channel complex at both temperatures. In conclusion, the remarkably fast kinetics of the native I(to) at 37°C could be reproduced by co-expressing Kv4.3, KChIP2, KCNE2 and DPP6 in CHO cells, whereas the high temperature sensitivity of human I(to) could be not mimicked.
File in questo prodotto:
File Dimensione Formato  
2013_JMCC.pdf

file disponibile solo agli amministratori

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 650.43 kB
Formato Adobe PDF
650.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/13628
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact