Bioactive glasses have been widely investigated for their ability to release ions with therapeutic effect. In this paper, a silica based bioactive glass was doped with a low amount of tellurium dioxide (1 and 5 mol%) to confer antibacterial and antioxidant properties. The obtained glasses were characterized in terms of morphology, composition, structure, characteristic temperatures and in vitro bioactivity. Moreover, comprehensive analyses were carried out to estimate the cytocompatibility, the antibacterial and antioxidant properties of Te-doped glasses. The performed characterizations demonstrated that the Te insertion did not interfere with the amorphous nature of the glass, the substitution of SiO2 with TeO2 led to a slight decrease in Tg and a TeO2 amount higher than 1 mol% can induce a change in the primary crystal field. In vitro bioactivity test demonstrated the Te-doped glass ability to induce the precipitation of hydroxyapatite. Finally, the biological characterization showed a strong antibacterial and antioxidant effects of Te-containing glasses in comparison with the control glass, demonstrating that Te is a promising element to enhance the biological response of biomaterials.

Tellurium: A new active element for innovative multifunctional bioactive glasses

Miola M.;Cochis A.;Rimondini L.;
2021-01-01

Abstract

Bioactive glasses have been widely investigated for their ability to release ions with therapeutic effect. In this paper, a silica based bioactive glass was doped with a low amount of tellurium dioxide (1 and 5 mol%) to confer antibacterial and antioxidant properties. The obtained glasses were characterized in terms of morphology, composition, structure, characteristic temperatures and in vitro bioactivity. Moreover, comprehensive analyses were carried out to estimate the cytocompatibility, the antibacterial and antioxidant properties of Te-doped glasses. The performed characterizations demonstrated that the Te insertion did not interfere with the amorphous nature of the glass, the substitution of SiO2 with TeO2 led to a slight decrease in Tg and a TeO2 amount higher than 1 mol% can induce a change in the primary crystal field. In vitro bioactivity test demonstrated the Te-doped glass ability to induce the precipitation of hydroxyapatite. Finally, the biological characterization showed a strong antibacterial and antioxidant effects of Te-containing glasses in comparison with the control glass, demonstrating that Te is a promising element to enhance the biological response of biomaterials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/134167
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact