Silk sericin (SS) is, together with silk fibroin (SF), one of the two proteins forming the silkworm cocoon. SS is ideal ingredient for cosmetic applications in the formulation of specific products for skin care and hair due to its peculiar physical-chemical composition. SS also showed a great potential in different pharmacological and biotechnological applications, as anticancer drug, anticoagulant, cell culture additive, wound healing agent and drug delivery carrier. Reasons for SS use in biomedical applications derive from its physical-chemical composition. As a consequence, a detailed characterization of SS in terms of average molecular weight, molecular weight distribution and hydro/lipophilic character is crucial to properly address and assess its quality, cosmetic or pharmacological use. In this study, the application of different and complementary chromatographic modes allows a detailed investigation of SS protein isolated from wastewater using two diverse extraction methods. Hydrophilic interaction liquid chromatography (HILIC using an AdvanceBio Glycan Map column) and reverse phase (RP using Symmetry300 C18 column) were applied to intact protein characterization to derive data on protein hydrophilicity and on hydrophobic components of the two SS preparations (SS#1 and SS#2). A higher hydrophilic character of SS#1 was observed by HILIC trace, coherently with the preparation method used, while no significant differences in hydrophobicity were detectable in the RPLC separations. Size distribution was also defined by using a SEC-UV-MS method (using TSKgel SuperSW2000 column) properly optimized to maximize both the size selectivity and the method sensitivity. Taken together, the chromatographic data allowed to better characterize the SS samples obtained by different extraction methods, and the structural properties were correlated to their biological activities.

Chromatographic profiling of silk sericin for biomedical and cosmetic use by complementary hydrophylic, reversed phase and size exclusion chromatographic methods

Bari, Elia;Torre, Maria Luisa;
2020-01-01

Abstract

Silk sericin (SS) is, together with silk fibroin (SF), one of the two proteins forming the silkworm cocoon. SS is ideal ingredient for cosmetic applications in the formulation of specific products for skin care and hair due to its peculiar physical-chemical composition. SS also showed a great potential in different pharmacological and biotechnological applications, as anticancer drug, anticoagulant, cell culture additive, wound healing agent and drug delivery carrier. Reasons for SS use in biomedical applications derive from its physical-chemical composition. As a consequence, a detailed characterization of SS in terms of average molecular weight, molecular weight distribution and hydro/lipophilic character is crucial to properly address and assess its quality, cosmetic or pharmacological use. In this study, the application of different and complementary chromatographic modes allows a detailed investigation of SS protein isolated from wastewater using two diverse extraction methods. Hydrophilic interaction liquid chromatography (HILIC using an AdvanceBio Glycan Map column) and reverse phase (RP using Symmetry300 C18 column) were applied to intact protein characterization to derive data on protein hydrophilicity and on hydrophobic components of the two SS preparations (SS#1 and SS#2). A higher hydrophilic character of SS#1 was observed by HILIC trace, coherently with the preparation method used, while no significant differences in hydrophobicity were detectable in the RPLC separations. Size distribution was also defined by using a SEC-UV-MS method (using TSKgel SuperSW2000 column) properly optimized to maximize both the size selectivity and the method sensitivity. Taken together, the chromatographic data allowed to better characterize the SS samples obtained by different extraction methods, and the structural properties were correlated to their biological activities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/133250
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact