Hybrid organic-inorganic luminescent lanthanide-based nanomaterials are currently attracting great interest for a variety of applications from bioimaging/sensing to optics and photonics. Herein, we present a concept model system based on purely silica-based core-shell nanoparticles (NPs), where luminescent Eu3+ions are confined to a thin silica layer and are efficiently remotely photosensitized through an antenna unit covalently grafted on the surface of the outer shell. The obtained core-shell NPs, synthesized through mild sol-gel methods, are of rare quality in terms of size distribution, homogeneity and smoothness of the coating shell, the absence of core-free silica, and dispersion of the dopant phase. Convenient indirect optical pumping through the remote photosensitizer allows a remarkable intensity enhancement of the Eu3+-based NP luminescence by 190-fold with respect to that achievable upon direct metal excitation, yielding the highest intrinsic (ΦEu= 49%) and overall (Φ = 19%) quantum yields and ligand-to-metal sensitization efficiency (ηsens∼ 40%) reported so far for Eu3+-based remotely sensitized organic-inorganic nanosystems. These performances are achieved thanks to the suppression of unexpected nonradiative decay channels pertaining to the silica matrix as revealed by an in-depth analysis of the temporal dynamics of Eu3+emission upon direct and indirect excitation. These results show that silica matrices are a suitable highly performing host alternative to commonly investigated nanocrystals such as fluorides for the development of lanthanide-based luminescent materials with the additional potentiality of high processing versatility through well-established sol-gel chemistry methods.
Lighting up Eu3+ luminescence through remote sensitization in silica nanoarchitectures
Artizzu F.
Primo
;Mara D.;
2018-01-01
Abstract
Hybrid organic-inorganic luminescent lanthanide-based nanomaterials are currently attracting great interest for a variety of applications from bioimaging/sensing to optics and photonics. Herein, we present a concept model system based on purely silica-based core-shell nanoparticles (NPs), where luminescent Eu3+ions are confined to a thin silica layer and are efficiently remotely photosensitized through an antenna unit covalently grafted on the surface of the outer shell. The obtained core-shell NPs, synthesized through mild sol-gel methods, are of rare quality in terms of size distribution, homogeneity and smoothness of the coating shell, the absence of core-free silica, and dispersion of the dopant phase. Convenient indirect optical pumping through the remote photosensitizer allows a remarkable intensity enhancement of the Eu3+-based NP luminescence by 190-fold with respect to that achievable upon direct metal excitation, yielding the highest intrinsic (ΦEu= 49%) and overall (Φ = 19%) quantum yields and ligand-to-metal sensitization efficiency (ηsens∼ 40%) reported so far for Eu3+-based remotely sensitized organic-inorganic nanosystems. These performances are achieved thanks to the suppression of unexpected nonradiative decay channels pertaining to the silica matrix as revealed by an in-depth analysis of the temporal dynamics of Eu3+emission upon direct and indirect excitation. These results show that silica matrices are a suitable highly performing host alternative to commonly investigated nanocrystals such as fluorides for the development of lanthanide-based luminescent materials with the additional potentiality of high processing versatility through well-established sol-gel chemistry methods.File | Dimensione | Formato | |
---|---|---|---|
2018 JMCC.pdf
file disponibile agli utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
1.81 MB
Formato
Adobe PDF
|
1.81 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.