Background: Dexterity impairments caused by carpal tunnel syndrome (CTS) make working and daily activities challenging. We aimed to investigate: i) the relationship between dexterity and nerve conduction studies (NCS) in workers with classic symptoms presentation; ii) the ability of the Functional Dexterity Test (FDT) to discriminate different levels of CTS severity as classified by NCS; iii) the diagnostic accuracy of a clinical battery composed of the FDT, Phalen’s test and Tinel’s sign. Methods: In a convenience sample of individuals diagnosed with CTS, we correlated FDT net scores with the NCS-based classification by means of Spearman’s (rho) test. Discriminative ability of the FDT was assessed by ANOVA, and a ROC curve determined cutoff thresholds. Sensitivity, specificity, and likelihood ratios (LRs) were used to investigate the diagnostic accuracy of the clinical battery. Results: Data from 180 hands were collected. The FDT was significantly correlated (rho = 0.25, p < 0.001) with NCS. The FDT was able to discriminate subjects with severe/extreme NCS findings, and two thresholds (0.29–0.36) were identified. Adding the FDT to the provocative tests improved the overall diagnostic accuracy (specificity: 0.97, CI95% 0.83–0.99; LR+: 14.49, CI95% 2.09–100.53). Conclusions: Sensorimotor impairments related to CTS can affect hand dexterity. The FDT discriminated patients with severe NCS involvement. Positive results on the clinical battery (Phalen, Tinel, and FDT) could help to confirm the CTS diagnosis, showing a very high specificity and LR+. On the contrary, the low sensitivity is not able to rule out CTS in individuals with negative results.
Relationship between nerve conduction studies and the Functional Dexterity Test in workers with carpal tunnel syndrome
Sartorio F.;Bravini E.;Invernizzi M.Co-ultimo
;
2020-01-01
Abstract
Background: Dexterity impairments caused by carpal tunnel syndrome (CTS) make working and daily activities challenging. We aimed to investigate: i) the relationship between dexterity and nerve conduction studies (NCS) in workers with classic symptoms presentation; ii) the ability of the Functional Dexterity Test (FDT) to discriminate different levels of CTS severity as classified by NCS; iii) the diagnostic accuracy of a clinical battery composed of the FDT, Phalen’s test and Tinel’s sign. Methods: In a convenience sample of individuals diagnosed with CTS, we correlated FDT net scores with the NCS-based classification by means of Spearman’s (rho) test. Discriminative ability of the FDT was assessed by ANOVA, and a ROC curve determined cutoff thresholds. Sensitivity, specificity, and likelihood ratios (LRs) were used to investigate the diagnostic accuracy of the clinical battery. Results: Data from 180 hands were collected. The FDT was significantly correlated (rho = 0.25, p < 0.001) with NCS. The FDT was able to discriminate subjects with severe/extreme NCS findings, and two thresholds (0.29–0.36) were identified. Adding the FDT to the provocative tests improved the overall diagnostic accuracy (specificity: 0.97, CI95% 0.83–0.99; LR+: 14.49, CI95% 2.09–100.53). Conclusions: Sensorimotor impairments related to CTS can affect hand dexterity. The FDT discriminated patients with severe NCS involvement. Positive results on the clinical battery (Phalen, Tinel, and FDT) could help to confirm the CTS diagnosis, showing a very high specificity and LR+. On the contrary, the low sensitivity is not able to rule out CTS in individuals with negative results.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.