In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising.

Rational Krylov methods for functions of matrices with applications to fractional partial differential equations

Lidia Aceto;
2019-01-01

Abstract

In this paper we propose a new choice of poles to define reliable rational Krylov methods. These methods are used for approximating function of positive definite matrices. In particular, the fractional power and the fractional resolvent are considered because of their importance in the numerical solution of fractional partial differential equations. The numerical experiments on some fractional partial differential equation models confirm that the proposed approach is promising.
File in questo prodotto:
File Dimensione Formato  
KrylovJacobi-revised.pdf

file disponibile solo agli amministratori

Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0021999119304942-main.pdf

file disponibile agli utenti autorizzati

Descrizione: PDF-rivista
Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/126196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact