Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai−/−mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai−/−mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.

The Shc protein Rai enhances T-cell survival under hypoxia

Pelicci G.;
2020-01-01

Abstract

Hypoxia occurs in physiological and pathological conditions. T cells experience hypoxia in pathological and physiological conditions as well as in lymphoid organs. Indeed, hypoxia-inducible factor 1α (HIF-1α) affects T cell survival and functions. Rai, an Shc family protein member, exerts pro-survival effects in hypoxic neuroblastoma cells. Since Rai is also expressed in T cells, we here investigated its role in hypoxic T cells. In this work, hypoxia differently affected cell survival, proapoptotic, and metabolic programs in T cells, depending upon Rai expression. By using Jurkat cells stably expressing Rai and splenocytes from Rai−/−mice, we demonstrated that Rai promotes T cell survival and affects cell metabolism under hypoxia. Upon exposure to hypoxia, Jurkat T cells expressing Rai show (a) higher HIF-1α protein levels; (b) a decreased cell death and increased Akt/extracellular-signal-regulated kinase phosphorylation; (c) a decreased expression of proapoptotic markers, including caspase activities and poly(ADP-ribose) polymerase cleavage; (d) an increased glucose and lactate metabolism; (e) an increased activation of nuclear factor-kB pathway. The opposite effects were observed in hypoxic splenocytes from Rai−/−mice. Thus, Rai plays an important role in hypoxic signaling and may be relevant in the protection of T cells against hypoxia.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/125108
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact