During aging, alterations in astrocyte phenotype occur in areas associated with age-related cognitive decline, including hippocampus. Previous work also reported subregion-specific changes in surface, volume and soma size of hippocampal astrocytes during physiological aging. Herein we extensively analyzed, by morphometric analysis, fine morphological features of GFAP+ astrocytes in young (6-month-old) and middle-aged (14-month-old) male mice. We observed remarkable heterogeneity in the astrocytic response to aging in distinct subfields and along the dorso-ventral axis of the hippocampus and in the entorhinal cortex (EC). Specifically, in middle-aged mice dorsal granule cell and molecular layers, but not dorsal hilus, astrocytes underwent remarkable increase in their morphological complexity. These changes were absent in ventral Dentate Gyrus (vDG). In addition, in EC, the major input to dorsal DG (dDG), astrocytes underwent remarkable atrophic changes in middle-aged mice. Since dDG, and not vDG, is involved in cognitive functions, these findings appear worth of further evaluation. Our findings also suggest an additional level of complexity in the structural changes associated with brain aging.

Complex and regional-specific changes in the morphological complexity of GFAP+ astrocytes in middle-aged mice.

Heather Bondi
Primo
;
Valeria Bortolotto
Secondo
;
Pier Luigi Canonico
Penultimo
;
Mariagrazia Grilli
Ultimo
2021-01-01

Abstract

During aging, alterations in astrocyte phenotype occur in areas associated with age-related cognitive decline, including hippocampus. Previous work also reported subregion-specific changes in surface, volume and soma size of hippocampal astrocytes during physiological aging. Herein we extensively analyzed, by morphometric analysis, fine morphological features of GFAP+ astrocytes in young (6-month-old) and middle-aged (14-month-old) male mice. We observed remarkable heterogeneity in the astrocytic response to aging in distinct subfields and along the dorso-ventral axis of the hippocampus and in the entorhinal cortex (EC). Specifically, in middle-aged mice dorsal granule cell and molecular layers, but not dorsal hilus, astrocytes underwent remarkable increase in their morphological complexity. These changes were absent in ventral Dentate Gyrus (vDG). In addition, in EC, the major input to dorsal DG (dDG), astrocytes underwent remarkable atrophic changes in middle-aged mice. Since dDG, and not vDG, is involved in cognitive functions, these findings appear worth of further evaluation. Our findings also suggest an additional level of complexity in the structural changes associated with brain aging.
File in questo prodotto:
File Dimensione Formato  
Bondi et al., 2021.pdf

file ad accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.7 MB
Formato Adobe PDF
4.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/119293
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact