Bacterial endophytes can colonize plant tissues without harming the plant. Instead, they are often able to increase plant growth and tolerance to environmental stresses. In this work, new strains of bacterial endophytes were isolated from three economically important crop plants (sorghum, cucumber and tomato) grown in three different regions in soils with different management. All bacterial strains were identified by 16S rRNA sequencing and characterized for plant beneficial traits. Based on physiological activities, we selected eight strains that were further tested for their antibiotic resistance profile and for the ability to efficiently colonize the interior of sorghum plants. According to the results of the re-inoculation test, five strains were used to inoculate sorghum seeds. Then, plant growth promotion activity was assessed on sorghum plants exposed to salinity stress. Only two bacterial endophytes increased plant biomass, but three of them delayed or reduced plant salinity stress symptoms. These five strains were then characterized for the ability to produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which is involved in the increase of stress tolerance. Pseudomonas brassicacearum SVB6R1 was the only strain that was able to produce this enzyme, suggesting that ACC deaminase is not the only physiological trait involved in conferring plant tolerance to salt stress in these bacterial strains.
Screening of bacterial endophytes able to promote plant growth and increase salinity tolerance
Gamalero E.;Bona E.;Novello G.;Cesaro P.;Massa N.;Lingua G.
2020-01-01
Abstract
Bacterial endophytes can colonize plant tissues without harming the plant. Instead, they are often able to increase plant growth and tolerance to environmental stresses. In this work, new strains of bacterial endophytes were isolated from three economically important crop plants (sorghum, cucumber and tomato) grown in three different regions in soils with different management. All bacterial strains were identified by 16S rRNA sequencing and characterized for plant beneficial traits. Based on physiological activities, we selected eight strains that were further tested for their antibiotic resistance profile and for the ability to efficiently colonize the interior of sorghum plants. According to the results of the re-inoculation test, five strains were used to inoculate sorghum seeds. Then, plant growth promotion activity was assessed on sorghum plants exposed to salinity stress. Only two bacterial endophytes increased plant biomass, but three of them delayed or reduced plant salinity stress symptoms. These five strains were then characterized for the ability to produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which is involved in the increase of stress tolerance. Pseudomonas brassicacearum SVB6R1 was the only strain that was able to produce this enzyme, suggesting that ACC deaminase is not the only physiological trait involved in conferring plant tolerance to salt stress in these bacterial strains.File | Dimensione | Formato | |
---|---|---|---|
applsci-10-05767.pdf
file ad accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.