Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world's population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project "In Silico Trial for Tuberculosis Vaccine Development" (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare.

Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS)

Pennisi, Marzio;
2019-01-01

Abstract

Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world's population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project "In Silico Trial for Tuberculosis Vaccine Development" (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare.
File in questo prodotto:
File Dimensione Formato  
RUTI® vaccine against tuberculosis.pdf

file disponibile solo agli amministratori

Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/118140
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 22
social impact