Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants’ roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0–0.2 m.

Phytoremediation of a highly arsenic polluted site, using pteris vittata L. And arbuscular mycorrhizal fungi

Cantamessa S.
Primo
;
Massa N.
Secondo
;
Gamalero E.
Penultimo
;
Berta G.
Ultimo
2020-01-01

Abstract

Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants’ roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0–0.2 m.
File in questo prodotto:
File Dimensione Formato  
plants-09-01211.pdf

file ad accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11579/115995
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 32
social impact