High-level Petri nets (HLPNs) are an expressive formalism well supported by a number of tools that automate the editing and the interactive simulation of models and some kinds of analytical techniques, mainly based on state-space exploration. Structural analysis of HLPNs is, however, a challenging task not yet adequately supported and it is often accomplished via the unfolding of an HLPN into a corresponding low-level Petri Net. An approach to derive a system of Ordinary Differential Equations (ODEs) from a Stochastic Symmetric Net (SSN) has been proposed a few years ago, based on the net's unfolding and subsequent grouping of similar equations. This method has been recently improved by providing an algorithm that directly derives a compact ODE system (from a partially unfolded net) in a symbolic way, through algebraic manipulation of SSN annotations. In this paper, we present the automation of the calculus of Symbolic ODEs (SODEs) for SSN models as a new module of SNexpression, a tool for the symbolic structural analysis of Symmetric Nets. An application of the tool/technique to a variant of a SIRS epidemic model including antibiotic resistance is also described.
A tool for the automatic derivation of symbolic ode from symmetric net models
Beccuti M.;Capra L.;De Pierro M.;Franceschinis G.;
2019-01-01
Abstract
High-level Petri nets (HLPNs) are an expressive formalism well supported by a number of tools that automate the editing and the interactive simulation of models and some kinds of analytical techniques, mainly based on state-space exploration. Structural analysis of HLPNs is, however, a challenging task not yet adequately supported and it is often accomplished via the unfolding of an HLPN into a corresponding low-level Petri Net. An approach to derive a system of Ordinary Differential Equations (ODEs) from a Stochastic Symmetric Net (SSN) has been proposed a few years ago, based on the net's unfolding and subsequent grouping of similar equations. This method has been recently improved by providing an algorithm that directly derives a compact ODE system (from a partially unfolded net) in a symbolic way, through algebraic manipulation of SSN annotations. In this paper, we present the automation of the calculus of Symbolic ODEs (SODEs) for SSN models as a new module of SNexpression, a tool for the symbolic structural analysis of Symmetric Nets. An application of the tool/technique to a variant of a SIRS epidemic model including antibiotic resistance is also described.File | Dimensione | Formato | |
---|---|---|---|
VersioneEditoriale_MASCOTS2019.pdf
file disponibile solo agli amministratori
Descrizione: Versione editoriale
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
443.01 kB
Formato
Adobe PDF
|
443.01 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.